
Learn the basics of robotics

“SumoBoy” v 2.0

Learning material and worksheets should be used together with robot prototyping kit “SumoBoy” for learning
basics of robotics pack.

 Please send any suggestions that has come up while using the pack to:
karlis@robot-nest.com

Learning material published by RTU

Editors Anita Vēciņa, Lilita Vīksna
Graphic designer Jekaterina Lukina
Photo Elīna Karaseva

© RobotNest, 2015

Follow updates on the learning material at our webpage www.robot-nest.com

። 3 ።

CONTENTS

Introduction 5
6
9

10
11
12
13
14
16
20
26
28
30
32
34
37
43
45
46
48
50
52
53
55
58
60
62
64

1. Elements of Electronics
1.1. Worksheet. Turning on Light-emitting diode
1.2. Worksheet. Switching Light-emitting diode
1.3. Worksheet. Series circuit with resistors
1.4. Worksheet. Parallel circuit with resistors
1.5. Worksheet. Light-emitting diode with capacitor
1.6. Worksheet. Series and parallel circuit with capacitor

2. Preparing programming environment
3. Beginning Programming

3.1. Worksheet. Button and light-emitting diode
3.2. Worksheet. Staircase lighting
3.3. Worksheet. Light-emitting diodes brightness
3.4. Worksheet. Light-emitting diodes blinking speed change
Chapters Annex

4. Semiconductors
4.1. Worksheet. Diodes circuit
4.2. Worksheet. Light-emitting diodes voltage
4.3. Worksheet. RGB Light-emitting diode
4.4. Worksheet. Operating RGB Light-emitting diodes with program
4.5. Worksheet. Using transistors
4.6. Worksheet. Multivibrator
4.7. Worksheet. Multivibrator with program

5. Sensors
5.1. Worksheet. Angle sensor
5.2. Worksheet. Temperature sensor
5.3. Worksheet. Light sensor
5.4. Worksheet. Obstacle and light reflection sensor
5.5. Worksheet. Capacitive sensor 66

። 4 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

68
71
73
75
77
79
80
81
82
84
86
88

91
92
93
94

6. Motors and Their Management
6.1. Worksheet. Operating a motor using a program
6.2. Worksheet. Regulating motors speed using a program
6.3. Worksheet. Servomotors management
6.4. Worksheet. Using H bridge

7. Mini-sumo robot
7.1. Worksheet. Robots light-emitting diodes
7.2. Worksheet. Robots buttons
7.3. Worksheet. Robots DIP switches
7.4. Worksheet. Robots line sensors
7.5. Worksheet. Robots distance sensors
7.6. Worksheet. Robots motors
7.7. Worksheet. Robots screen

8. Minisumo competitions
8.1. Worksheet. Minisumo settings
8.2. Worksheet. Robot that avoids obstacles
8.3. Worksheet. Program for not driving out of the ring
8.4. Worksheet. Program for sumo battles 98

102
104
106

Annex No1. List of parts and their images
Annex No2. Robots input and output devices
Annex No3. Robots overall scheme
Annex No4. Learn soldering 108

P4.1. Worksheet 110

90

Expected results after learning the program:
• Have learned the basics in technical safety

and soldering; have skill in using
multimeter.

• Have gained understanding of basic
elements of electronics and their usage.

• Have gained understanding in the
management of electric motor and ability
to process sensor data.

• Have learned basics in programing.

INTRODUCTION

Aim of the Program
Promote students interest in robotics as one

of the most fast-growing field of engineering
science; motivate students to connect their
further education with engineering science.

Tasks of the Program
Gain the ability to combine the elements

of electrical engineering, electronics and
computer science to create a robot by using the
ingredients included in the learning pack so the
robot would be able to accomplish the actions
embedded in its software.

 For students attending schools for general
education the physics program does not include
lesson dedicated to learning soldering, which is
why this program for the basics of robotics
includes a separated lesson to teach it. The
worksheets include exercises for learning technical
safety and the use of multimeter. Sumo robot
competition is held by the end of the school year
to motivate students to learn.

---..Learning pack for learning the basics of
robotics “SumoBoy” is meant for one school year
(Form 7-12, upon schools preference). Classes are
held once a week, every lessons length is three
academic hours. After learning the basics of
robotics students can use this pack for further
development of their sumo robot for competitions
as well as applying their skills in modern field of
robotics. The pack is complemented by curriculum
and worksheets for every lesson. Curriculum can
be carried out as an individual subject or as
extra-curricular lessons.

During the school year students learn about
the electronic elements that are needed for
constructing a robot, management of electric
motor for direct current, processing of data
obtained by sensors all while doing more and
more complicated tasks. Another set of tasks is
meant for learning basics for programming a
robot. The “SumoBoy’ robot that is included in
the learning pack complies with the regulations
for international minisumo robot competitions.
Because of this students will be able to participate
in national or international competitions
defending the name of their school or region.

The learning material is separated in
topics which view individual aspect of robot’s
structure, for example, elements of electronics,
management of electronic motor, etc. Each
topic has general description and tasks. All
topics are numbered throughout the learning
material, but worksheets (independent work)
for each topic start with worksheet No1.

Worksheets are made so they could be
printed and kept beside as a ‘cheat-sheet’ while
doing the task.

The Structure of Learning Material

Overview of the learning pack “SumoBoy”

። 5 ።

። 6 ።

1. ELEMENTS OF ELECTRONICS

1.1. Aim
The aim of this topic is to introduce elements

and possibilities of constructor prototyping plate
as well as give general knowledge about elements
of electrical circuits.

1.2. Theoretical part
vienkārša elektriskā ķēde
A robot is made up of mechanical, electronic

and programming part. In this chapter we look
at electric part- electric circuits. Every electric
circuit has source of energy (in this constructor
it is an accumulator), connector (wires) and
resistor which consumes power to accomplish
an action - do calculations, operate the engine or
read sensor data. Schematically it is labeled as
follows:

Denotation Schemes symbol

+5V
+5V

Positive port of the source
of energy (battery,
accumulator). Electrical
current in circuit flows
from positive to negative
connection or pole.
Negative or shared port
of the source of energy
(battery, accumulator).
Sometimes it is also
called ground or mass
(car circuits).

Resistor.

Wire or connector without
important resistance.

Button.

One and two pole switch.

Example for simple circuit:

terms

• Resistance is the counteraction of the connector
for the flow of the current. It is measured in
ohms (Ω). Resistance is indicated with R.

• Amperage is the flow of particles that can carry
electric charge. It is measured in amperes (A). It
can be compared to the flow of water in the
pipes- the more you open the tap the stronger
the flow of the water. Current is indicated with I.
Current flows form circuits positive port to its
negative port as it is shown in the example
circuits.

• Voltage is the difference in electric potential
energy. It is measured in volts (V) and indicated
with U.

The three elements mentioned are connected
by the Ohm’s law:

 jeb

Fun-fact. This law is named after the German
scientist Georg Simon Ohm who formulated it in 1827
after proving that in electric circuit there is coherence
between voltage in a part of a circuit and its current.

Series and parallel circuits
Sometimes in more complex circuits it is

necessary to form a circuit with several resistors,
which are closed one after the other - series
connection or next to each other - parallel
connection:

። 7 ።

Learn the basics of robotics “SumoBoy” v 2.0 1. Elements of electronics

Series circuit

I1

U

R1 R2
I2

U1 U2

+5V

U1 = I1R1 U2 = I2R2 U = IR

U = U1 + U2

R = R1 + R2

I = I1 = I2

Parallel circuit

+5V

R1

R2

I1
U1

I2

U2
U

U1 = I1R1 U2 = I2R2 U = IR

U = U1 = U2

1 1 1

I = I1 + I2

Capacitors
To have the electric and electronic circuits

working in a preferred way one important element
is the capacitor which main task is to store electric
charge. In this way its function is similar to
accumulator which can store electric charge for a
period of time and when necessary use it in the
circuit. In this topic we look only at the electrolytic
capacitor which is usually made up of at least two
decors of connectors with output for connecting to
circuit and with dielectric (form material that is
non-conducting or electrical isolator).

Schematic denotation of the capacitor:

Denotation Schemes symbol

+ +

Different symbols for electrolytic
capacitor where with ‘+’ is shown
the direction of the positive port
for the circuit.

The display of the capacitor clearly
shows the two decors of
connectors that are separated by
non-conducting material - isolator.

Simple example of the scheme:

+

+5V This is addition to the previously
shown scheme. It ensures that
electric current doesn’t flow
through the resistor before the
capacitor has charged- the flow
of the current is momentarily
delayed.

Terms

•

•

The amount of electric charge that can be
stored by a capacitor is called capacitance
and indicated with C. The bigger the size of
capacitor the bigger its capacitance.
The measurement for capacitance is farad (F).
Usually when using capacitors their capacitance
is from few picofarads (pF) up to ten’s and
hundreds of microfarads (μF). In a few special
usages there can be used a capacitor with
especially large capacitance, up to couple
farads.

• Capacitor can also be characterised by
breakdown voltage (V) by which its properties
stay constant. It is advised to use smaller
voltage because bigger voltage could damage
the capacitor.

Fun-fact. The first capacitor was used in 1745
by German physicist Ewald Georg von Kleist and
Dutch physicist Pieter van Musschenbroek. It
happened in Leiden and the device was made from
glass container with decors of metal foil on the
inside and outside of them. It was named the
“Leyden jar”. It could be charged with electrostatic
generator and it could store quite large high-voltage
charge.

። 8 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Similar to the resistors, in more complicated
circuits it is possible to create a circuit with many
capacitors connected one after the other (Series
circuit) or one next to the other (Parallel circuit):

Series circuit

+ +C1
U2

+5V

R

C2
U1

Allows adjusting the capacitance to individual needs.

Parallel circuit

R

+
+ C1

C2

+5V
U

C = C1 + C2

Allows increasing the general capacitance.

Light-emitting diode (LED)
There is another element added to the scheme to

make it more understandable for practical tasks-
Light-emitting diode (LED) which works similar to
a light bulb and ensures that the current flows in
one direction; unlike the bulb it won’t work if it is
connected in the wrong direction. In the topic
“Semiconductors” we will talk about diodes and
other elements in more detail. Schematic symbol for
LED is this:

Denotation Schemes symbol

Light-emitting diode; the arrow shows
the direction of the current.

Simple example of scheme:

+5V

R

This type of scheme ensures that the LED shines when
the button is pushed.

It should be emphasized that the LED will work only if
the positive and negative ports will be aligned with the
current as it shown in the scheme. LED has quite small
resistance so it requires a resistor to be added before or
after it.

። 9 ።

1.1. WORKSHEET. Turning on Light-emitting diode

Aim
To make your first electrical circuit as shown

in the theoretical part.

Steps of work
1. Make the scheme that is shown in the image.
2. Connect the scheme to a source of power

and push the button. Let there be light!
3. Disconnect the scheme from the source of

power.
4. Use multimeter to measure resistance

between the points 1 and 2. How big is the
resistance in ohms?

5. Connect the scheme to the source of power.
6. Lock down the switch or replace it with a

wire so that the light-emitting diode would
constantly shine.

7. Use multimeter to measure voltage
between the points 1 and 2. How big is the
voltage in volts?

Materials needed
Material/ part Amount

Resistor (330 Ω) 1
Light-emitting diode 1
Button 1
Mounting cord 4

Scheme to be created
+5V

21

This scheme shows how to make a circuit that ensures that
the light-emitting diode shines after pressing the button.

The two points (1 and 2) are meant for measuring voltage
(U) and resistance (R).

Turning on LED

። 10 ።

1.2. WORKSHEET. Switching Light-emitting diode

Schemes to be created

+5V

Switch for the staircase where the light can be turned on
and off from different places. The light-emitting diode can
be replaced with a light bulb as seen below.

+5V

It should be emphasized that the light bulb has its own
resistance. Because of this the resistor can be removed.

Aim
Learn how to use switches for interesting

exercises.

Steps of work
1. Make the scheme that is shown in the image.
2. Connect the scheme to the source of power

and turn on one of the switches.

Materials needed
Material/ part Amount

Resistor (330 Ω) 1
Light-emitting diode 1
Mounting cord 6
Switch 2

Connecting LED

። 11 ።

1.3. WORKSHEET. Series circuit with resistors

 Aim
Learn how to use series circuit with resistors.

 Steps of work
1. Make the scheme that is shown in the image.
2. Connect the scheme to the source of power

and push the button.
3. Disconnect the scheme from source of power.
4. Use multimeter to measure resistance

between the points 1 and 2. How big is the
resistance in ohms?

5. Use multimeter to measure resistance
between the points 2 and 3. How big is the
resistance in ohms?

6. Use multimeter to measure resistance
between the points 1 and 3. How big is the
resistance in ohms?

7. Check if the measured resistance matches the
calculated one by using formula for
calculating resistance for series circuit.

Materials needed
Material/ part Amount

Resistors (330 Ω) 2
Light-emitting diode 1
Button 1
Mounting cord 4

Scheme to be created

+5V

21 3

The previously shown scheme with light-emitting diode
with added resistor creating series circuit with resistors.

Resistors series circuit

። 12 ።

1.4. WORKSHEET. Parallel circuit with resistors

 Aim
Learn how to use parallel circuit with resistors.

 Steps of work
1. Make the scheme that is shown in the image.
2. Connect the scheme to the source of power

and push the button.
3. Disconnect the scheme from source of power.
4. Use multimeter to measure resistance

between the points 1 and 2. How big is the
resistance in ohms?

5. Use multimeter to measure resistance
between the points 1 and 3. How big is the
resistance in ohms?

6. Use multimeter to measure resistance
between the points 1 and 4. How big is the
resistance in ohms?

7. Check if the measured resistance matches the
calculated one by using formula for
calculating resistance for parallel circuit.

Materials needed
Material/ part Amount

Resistors (330 Ω) 2
Light-emitting diode 1
Button 1
Mounting cord 4

Scheme to be created

+5V

31 4

2

The previously shown scheme with light-emitting diode
with added resistor creating parallel circuit with resistors.

Resistors parallel circuit

። 13 ።

1.5. WORKSHEET. Light-emitting diode with capacitor

 Aim
Learn how to use capacitor.

Scheme to be created

+

+5V

Scheme ensures that the light-emitting diode extinguishes
evenly after disconnecting the power; after turning the
power off the capacitor ensures the energy needed for the
light-emitting diode for a certain amount of time.

LED with capacitor

Steps of work
1. Make the scheme that is shown in the image.
2. Connect the scheme to the source of power

and push the button. How many seconds
does it take for the light-emitting diode to
turn on?

Materials needed
Material/ part Amount

Resistor (330 Ω) 1
Light-emitting diode 1
Electrolytic capacitor
(2200 µF, 10 V) 1

Button 2
Mounting cord 2

። 14 ።

1.6. WORKSHEET. Series and parallel
 circuit with capacitor

Aim
Learn how to use series and parallel circuit

with capacitor.

Steps of work
1. Make the scheme that is shown in the first

image.
2. Connect the scheme to the source of power

and push the button. How many seconds
does it take for the light-emitting diode to
turn on?

3. Make the scheme that is shown in the second
image.

4. Connect the scheme to the source of power
and push the button. How many seconds
does it take for the light-emitting diode to
turn on?

5. How did the time change from the series
circuit.

Materials needed
Material/ part Amount

Resistor (330 Ω) 1
Light-emitting diode 1
Electrolytic capacitor (2200 µF, 10 V) 2
Button 1
Mounting cord 2

Scheme to be created
Series circuit

+

+5V

+

Parallel circuit

+

+5V

+

Schemes ensures that the light-emitting diode extinguishes
evenly after disconnecting the power; after turning the power
off the capacitors ensures the energy needed for the light-
emitting diode for a certain amount of time. The delay varies
with different type of circuit.

። 15 ።

Learn the basics of robotics “SumoBoy” v 2.0 1. Elements of electronics

Capacitors series circuit

Capacitors parallel circuit

። 16 ።

2. PREPARING PROGRAMMING ENVIRONMENT

2.1. Aim

2.2. Theoretical part
Over all description

Over all information about the microcontroller

Parameter Value
Needed microprocessor ATmega32u4
Working voltage 5 V
Power voltage
(recommended) 7–12 V

Digital input/output 20
PWM canals 7
Analog signal input/output 12
Input/output maximum
amperage 40 mA

Programs available
memory

32 KB (kilobyte), form which
4 KB are occupied by the
source code

Clock frequency 16 MHz
Length/width 48 mm/18 mm
Weight 13 g

Detailed description of scheme can be found in:
http://arduino. cc/en/uploads/Main/arduino-
micro-schematic.pdf.

Power
To ensure that the microcontroller will work it

can be connected to outer power source or USB
port. Microcontroller determines its power source
automatically. If outer power sources are used (not
USB) then you have to use GND or VIN ports.
Manufacturer advises to use 7-12 V voltage to
ensure normal microcontrollers workability. If it is
exceeded without reaching 20 V, there is a
possibility that the microcontrollers feeding
circuits can overheat. If the voltage is lover than 7
V then there is a possibility of unstable activity of
microcontroller and the result will be
unpredictable.

Microcontroller outer appearance

The aim for this topic is to create programming
environment, configure it make your first program
by using the Arduino Micro® microcontroller that
is included in the learning pack.

The learning constructor includes Arduino
Micro type microcontroller which will help in
learning the basics of programming as well as fully
prepare you for programming your minisumo
robot and prepare it for competition.
Microcontroller is based on ATmega32u4
microprocessor base in collaboration with Italian
corporation “Adafruit”. It has 20 input/output
pins; part of witch can be used for doing different
specific tasks, for example managing electric
motors or acquiring sensory data.

The Microcontroller package includes all that is
necessary for creating and operating a program. It
simply has to be connected to your computers USB
(Universal Serial Bus) port while using the
appropriate cable (more on it later). Microcontroller
can be used together with prototyping plate or with
robot. During the more simple programming
exercises it can be used as separate device.

Taking in account the similarity with other
Arduino type microcontrollers, and you already
have experience in using them, it will help in doing
the exercises in this book.

። 17 ።

Learn the basics of robotics “SumoBoy” v 2.0 2. Preparing programming environment

In addition to before mentioned, the
microcontroller can ensure small outer circuit
power by connecting them to microcontroller’s legs
(from now on MC legs).

Denotation Explanation

VIN
Power voltages input, if USB is not
used; using outer power source.

5 V
5 V regulated feeding voltage which can
be ensured by using both USB port and
VIN.

3 V

3.3 V power voltage for outer circuit
power. This output can ensure maximum
amperage of 50 mA. If it is exceeded
then the microcontroller’s circuits can be
permanently damaged.

GND Ground or port 0

Pilna mikrokontrollera kāju shēma

Input and output pins
Every one of the microcontrollers 20 pins can be used
for emitting or receiving signals by using
commands pinMode(), digitalWrite() and
digitalRead(). These will be closer looked at in
chapters about learning programming basics. All
pins work in the range of 0 to5 V. every pin can
receive or give maximum 40 mA current. Each have
inner load resistors in the range of 20-50 kΩ.

Denotation Explanation

1/TX un 0/RX

Pins needed for series communication
connection. RX- for receiving data; TX-
for transmitting data to outer devices.
For transmitting and receiving data the
signal level (voltage) cannot exceed 5 V.

2/SDA un 3/SCL

Ports are used for TWI (Two Wire
Interface) data exchange which is an
alternative for series communication
transferring and receiving.

0 (RX), 1(TX),2,3

In addition to previously mentioned
functions this pin can be used for
receiving outer interrupts. Interrupts are
used to signal to the main program for
necessity to stop its work and do some
special actions. This functionality is used
with command attachInterrupt().

PWM:
3,5,6,9,10,11

un 13

These pins ensure 8 bit resolution
pulse-width modulation to port
which is normally used in robotics for
managing motors as well as other
specific applications. This
functionality is used with command
analogWrite().

LED 13

In addition to previously mentioned
functionality this pin is connected to red
LED which can be operated by the
program.

A0–A5, A6–11

The microcontroller has 12 analogue pins
with 10 bit resolution. That means that
voltage level from 0 to 5 V is coded with a
number from 0 to 1023. However, these
settings can be changed with the
command analogReference().

2.3. Installing programming
environment

Below there are explenations for other
microcontroller’s legs denotations and their
specific applications.

In addition to the previously mentioned pin
functions the microcontroller can also ensure other
functions that will be looked at in specific
exercises.

To begin developing software for the
microcontroller you have to install and
appropriately configure the environment of
development which consists of programs editor
and Arduino Micro driver. Down below there are
all the steps to prepare programming environment
for operating system Windows 8.

። 18 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Safety question about installing the drive

Step No.3. Connecting Arduino
Connect Arduino to one of the free USB ports of

your computer. Blue colour LED starts continuously
shining. This means that Arduino microcontroller is
working. Green LED will blink; this shows that
developer’s test program is working. If the green
LED is not bilking it does not mean that
microcontroller is malfunctioning.

Step No.4. Starting up the
programming environment

With double-click on programming
environments desktop shortcut start up Arduino
programming environment.

Progamming language will be the same as your
operating systems language; if it is Latvian then
the programming environments menu will be in
Latvian. If it is not the same than follow the
instructions in:
http://arduino.cc/en/Guide/Environment#lan-
guages.

Step No.5. Open example
program

Choose LED example program.

Opening example program

Step No.1. Prepare Arduino
Micro and USB cable
To install development environment you need

to prepare Arduino Micro as well as USB micro
cable.

USB micro cable usually is a part of modern
mobile phone charging tools.

Step No.2. Download Arduino
software development
environment
First you need to download files that are

required for installing the environment:
http://arduino.cc/en/Main/Software.
Choose installation files that are appropriate to the
operating system and restriction laws.

If you downloaded the installer, run it after the
download is completed. If you downloaded the
ZIP archive then unpack it and run the installer.
Follow the installer’s instructions. If the operating
system asks for permission to install the drive for
the device, give the permission.

Arduino Micro and USB micro cable

Choice of installation files for download

። 19 ።

Learn the basics of robotics “SumoBoy” v 2.0 2. Preparing programming environment

 Example program will be shown in a new
window; it is of the green LED turning on and off
with one second interval.

Step No.6. Choosing
microcontroller
Choose menu Tools > Plate > Arduino Micro

as it is shown in the image.

Step No.7. Setting up COM port
To ensure transmitting and receiving of data

for the controller you need to set up series
communication port – COM port. They are usually
in sequential order and for Arduino
microcontrollers they are usually bigger than
COM3; as in COM4, COM5 etc. (in the image it is
COM4).

Setting up microcontrollers COM port

If you’re not sure about the ports number,
disconnect the microcontroller and check the port
list again. The right port won’t be in the list any
more.

Step No.8. Sending example
program for execution
 Now all that’s left is to push the button for

uploading; wait for a few seconds in which you can
see the indication of data being sent – Quick
blinking of the LED (shows that data are being
transmitted or received) – and wait for the notice
“uploading completed”.

After a few seconds the green LED will start
blinking with one second interval. If it is so, then
you have done everything to be able to start
learning basics of programming!

If everything doesn’t happen as it is described
then please look over the advices that can be found
in: http://arduino.cc/en/Guide/Troubleshooting.

If you wish to learn about possibilities of using
microcontroller or basics of programming see one
of these sources:

• Examples for preforming exercises of varied
difficulty:
http://arduino.cc/en/Tutorial/HomePage.

• Explanations for programming language
used:
http://arduino.cc/en/Reference/HomePage.

Example program

Setting up microcontroller’s type

Setting up microcontrollers COM port

። 20 ።

3. Beginning programming

3.1. Aim
The aim of the topic is to introduce with the

possibilities of programming that are offered by the
programmable microcontroller (from now on MC)
Arduino Micro used in the constructor. The task of
this topic is not to show all programming
possibilities, but to concentrate on achieving specific
programming goals. That is why it is advised to see
some of Arduino additional programming learning
materials for example “Arduino Programming
Notebook” by B. Evans which can be found in:
http://playground.arduino.cc/uploads/Main/
arduino_notebook_v1-1.pdf.

In this chapter it is considered that you have
successfully installed the programming
environment as well as completed 1st chapters
“Elements of electronics” exercises which can be
referenced here.

3.2. Theoretical part
3.2.1. What does the MC
Arduino program consist of

void setup()
//the data type and name of the functional
result
{ //beginning of the function
 //body of the function – all the
executable commands
} //end of the function

As before mentioned this is a function that
will be carried out only once. Function is
characterised with its data type (number, a
series of symbols or something else). In this
example the key word void means that the
initializations function does not have a result
as in it is carried out only once. The title has
to be setup so the MC embedded programs
execution subsystem would be able to
distinguish between initialization and other
parts of the program.

3. Cycle part – it is executed all the time; it
reads the output, does calculations and
emits output signals. After executing the
last command the program returns to the
cycle parts first command and stars executing
all the commands again. This is the main part
of the program which includes the course
and so called logic of execution.

void loop()
//the data type and name of the functional
result
{ //beginning of the function
 //cycle commands
 //body of the function – all the
 executable commands
} //end of the function

The type of this function is also void which
shows that it has no result as in its executed
cyclically during the programs operation.

As you can see, both parts are structured in the
same way because both are functions with the only
difference being its name, setup and loop, and
meaning. To better understand the meaning of
every function we will look at a simple example in
the programming environments example section
Fails → Examples → 01.Basics → Blink.

This is the program code is shown:

void setup()
//the data type and name of the functional
result
{ //beginning of the function
 pinMode(13,OUTPUT);
 //defines 13 MC leg as output
 //as in it can be used for emitting a
 signal
 //functions body – all executed
 //commands
} // end of the function

Every Arduino program consists of these
parts:
1. Global definition part – in it variables,

constants and other definitions that are valid
in the entire program, are set; they are valid
in both program parts mentioned below.

2. Initialization part – it is carried out only
once, before carrying out the main program.
Usually in this part all the constant variables,
like MC leg meaning (input or output),
constants and others, are defined. The most
important aspect that is defined in this part is
the input or output pins that will be needed
for the program and their use.
Example of initialization:

። 21 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

delay(1000);

In this program code you can see:
1. The MC leg 13 is defined as an output. With

it you can emit signal. In this example that
program is set to periodically determine the
output signal in logical level 1 (+5V) and 0
(0V). Taking in account that the 13 pin is
connected to MC Arduino LED, by changing
the signal in this way the LED gets
periodically turned on or off.

2. A continuous function loop() has been
created which allows 1 second or 1000
milliseconds for every signal level. It is
achieved by stopping the execution of the
program. As long as the program doesn’t
change the input/output mode the function
doesn’t change. That way after emitting
signal level +5V and then stopping the
execution the LED will continue to shine
until the signal level will be lowered to 0V.

3. The last row defines that the program with 0
V level is also stopped for 1 second. That
way the periods of turning on and off of the
LED are the same. After this command the
program returns to firs command of the
loop() and begins its execution all over again.

Program example base

3.2.1.1. Display of the
program in diagram

The beginning and end of the program.

Step of the program or some other
action to be executed.

Testing, conditions for further execution
of the program.

The progress of executing the program.

By using this flowcharts elements the example
function loop() can be shown as a diagram in the
image below. In the following tasks the functions
will be displayed as flowcharts to better and easier
show more difficult processes of executing
programs.

void setup()
//the data type and name of the functional
//result
{ //beginning of the function
digitalWrite(13,HIGH); //output signal is

//set up on output pin No13
//logical level 1 as in +5 V

delay(1000); //the execution of the program
//is stopped for 1000 milliseconds
//or 1 second

digitalWrite(13,LOW); //output signal is set
//up on output pin No13

 //logical level 0 as in 0 V
delay(1000); // again the execution is

//stopped for 1000 milliseconds
//or 1 second

 //cycle commands
 //functions body - all executed
 //commands
} //end of the function

Sometimes it is easier to display difficult
algorithms as a graphical diagram. One of the most
popular types of these diagrams is the flowchart. Its
base elements look like this.

Flowchart of the example program

። 22 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

3.2.1.2. Programs
basic functions
In this subchapter we will look at MC Arduino

programs main constructions.

Functions
Function is the set of commands that is

executed every time it’s called. The two structures
are already known – setup() and loop(). The
programmer usually tries to put the main idea of
the program in one or many self-created functions
which are called from setup() or loop(). Structure
looks like this:

type structure name (arguments)
{

commands;
}

We can create our own example function
which allows turning on and off the LED
(similarly to the previously shown example):

void exampleFunction()
{

digitalWrite(13,HIGH);
delay(1000);
digitalWrite(13,LOW);
delay(1000);

}

void loop()
{

exampleFunction();
}

The program code in Ardiono environment
looks like this:

void loop()
{

exampleFunction();
}

void exampleFunction()
{

digitalWrite(13,HIGH);
delay(1000);
digitalWrite(13,LOW);
delay(1000);

}

If we want to get a specific result from our
function then we need to show the returning type
of the function:

int sumOfTwoFigures(int x, int y)
{

return (x+y);
}

Variables

int myExampleVariable = 0;
 //assigning variables definition and
 //starting value
 mansPiemeraMainigais = 32;
 //change of variables value

Attention! The names of the variables have to
be meaningful so others would be able to understand
the program code.

You have to remember that variable is similar
to storage; it reflects the contents of MC memory.
The contents are always available and it doesn’t
change if it is not changed. In the next example the
previously shown value is increased by 10.

myExampleVariable = myExampleVariable + 10;
//10 is added to the variables value

Variables have to often be checked to make a
decision about further execution of the program. In
the example below the value from the MC leg 2 is
read and compared. If the value is bigger than 100
then the variable is assigned the value 100
(example from: http://play-ground.arduino.cc/
uploads/Main/arduino_note-book_v1-1.pdf):

To call it we need to slightly modify the loop()
function:

 Variables are a way how to temporarily
save or give name to specific digital or other type of
data. The values of variables can be changed
during the execution of the program whenever it is
necessary. Every variable has its data type (see
below), name and value. In the example below you
can see how new variable is defined with starting
value and then it is changed:

Attention! Remember that ‘=’ is not the
‘equals’ sign; it is the assigning of value. The
command in the previous example is not comparing
as in math; it is the changing of the existing value.
The basic idea of the action is this: get the value of
the variable myExampleVariable which is 32, and
increase it by 10. Save the result in the variable
myExampleVariable. Now the value of the
variable myExampleVariable will be 42.

። 23 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

int inputVariable = 0
//defines the variable and its starting value
inputVariable = analogRead(2);
 //reads the analog signal value from the
 //MC lag 2 and records the value in the
 //variable}
if (inputVariable > 100)

//the variables value is compared to 100
{
inputVariable = 100;

//if the value is bigger than 100 the
//variable is assigned the value 100;
//variables value
//is restricted by upper threshold 100

}
delay(inputVariable);

The activity area of variable

int globalVariable;
//this variable is visable in whole program
void setup()
{

int setupVariable;
//this vatiable is accasible only in setup()
}
void loop()
{
 int loopVariable;
//this vatiable is accasible only in loop()
//functions
//body
for(int i = 0; i < 20; i = i + 1)
//in this cycle new variable I is defined
//which is accessible only in this cycles
//body. That is why these variables are
//sometimes called cycle variables

{
 //other commands
}

}

Data types
Every variable can have its own data type

which determines its place in MCs memory as
well as the way it is used. Here we will look only
at the main data types, but there are many more.

Data type Explanation

byte
8 byte numeric type which can store numbers
from 0 to 255

byte exampleVariable = 123;

int
16 byte integer which can store values from -32
767 to 32 768

int exampleVariable = 12 300;

float

Real numbers data type which take up 32 bytes
and is capable in storing numbers from around
3,4 · 1038 to −3,4 · 1038.

float exampleVariable = 12300.546;

Array

Arrays are a set of the same data types which
can be accessed with order number or index.
Index for the first element is always 0. Array’s
values can be assigned to it all at once at the
beginning or over the course of programs
execution.

int exampleArray[] = {12,−3,8,15};

Here you can see array with the name
exampleArray and data type int. There are
initial values assigned to it. This means that
elements No0 value is 12 and elements No3
value is 15.

int otherVariable = exampleArray[1];

After executing this command the value of the
variable otherVariable is -3.
Arrays are very useful for processing in cycle
part. In the next example you can see how
necessary values from analog signal input are
automatically saved in previously defined
array.
for(int i = 0; i < 4; i = i +1)
{
 exampleArray[i] = analogRead(2);
}

Example cycle is started with 0 index (i = 0)
which is increased by 1 as long as it is lower
than 4. This means that the cycle will be
executed for the last time when i value will be
3, because if i is equal to 4 then equation i < 4
will be false and cycles action will be stopped.

Bool

This type of variable can take the value of true
or false. Accordingly Arduino programming
environment allows the variables to take these
values:

TRUETrue
False FALSE

HIGHLogical 1 (+5 V)
Logical 0 (0 V) LOW

Logical operators
and comparing
Comparing was already shown in example

programs with the help of operator if. However, it
is important to look at different operators for fast
and easy coding.

Every variable has its activity area
(visibility) where the value can be accessed.
Variable can be defined in the very beginning of
the program (global variables), in functions body
or sometimes even in command block, for example
in the cycle. The place where you define the
variable determines its visibility. In the next
example you can see many variables with different
visibility:

። 24 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

a==b //variable a is equal to variable b

a!=b //variable a is not equal to variable b

a<b //a is smaller than b

a>b //a is bigger than b

a<=b //a is smaller or equal to b

a>=b //a is bigger or equal to b

All logical equations can be true or false.
These logical equations can be combined with
logical operators to create more difficult
conditions.

if(a>b && a<45)
// ‘&&’ operator translates as ‘and’;
//for all of the values of the equation to be
//true the equation
// a > b as well as a < 45 has to be true.

if(a>b || a<45)
// ‘||’ operation translates as ‘or’;
//for all of the values of the equation to be
//true one of the equations
//a > b or a < 45 has to be true.

if(!a>b)
// ‘!’ operation translates as ‘not’;
//for all of the values of the equation to be
//true the equations
//a > b has to be false

Condition operator
Condition operator helps to make a

decision about further action of the program. For
example, if you have to make a decision about
processing a specific input signal you can use this
construction:

int inputVariable = analogRead(2);

if(inputVariable > 100)
{

//do signal processing or other actions
}
else
{

//do alternative sequence of actions
}

As you can see, alternative section else is added
to the operator if. This allows making some other
actions if the signals value is not 100 as shown in
the example. One condition operator can include
others, creating complicated program action
scenarios, for example:

int inputVariable = analogRead(2);
if(inputVariable > 100)
{

//do signal processing or other actions
if(ieejasMainigais < 130)
{

//special processing of input value
//when it is between 100 and 130

}
}
else if (inputVariable < 30)
{

//do signal processing or other
//actions, if input signal value is
//less then 30

}
else
{

//do alternative sequence of actions,
//if non of the conditions work

}

FOR cycle’s operator
Cycle operator allows executing the same

actions for a specific amount of times. This is
where cycles are similar to loop() function, but it
allows to control cycles execution. Every time all
the actions in the cycle have been executed there is
one cycle’s iteration step. Because of this cycle is
one of the fundamental techniques of
programming which is the basis for all programs
and automations as a whole. FOR cycle
construction is this:
for (initialization;condition;
action with cycles variable)
{

//cycles bodies operations
}

• Initialization usually is used to initialize cycle’s
variables value which can be equal or not equal
to 0.

• Condition allows managing the amount of
cycle’s iteration steps because it determines
how every next iteration step is carried out.

• Actions with cycle’s variable allow
determining the amount of iteration steps.

Typical FOR cycles example:

for (int i = 0; i < 4; i = i + 1)
{

digitalWrite(13,HIGH);
delay(1000);
digitalWrite(13,LOW);
delay(1000);

}

። 25 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

By the end of executing this cycle the LED on
the MC will have turned on and off 4 times.

WHILE cycle’s operator
This cycle’s operator is similar to FOR,

however, it doesn’t have cycle’s variable so it
allows executing unknown amount of iteration
step. Cycle’s management is carried out with the
condition that the cycle is true for the interview to
be executed. This is WHILE cycles construction:

while (condition that is true)
{

//cycles body
}

WHILE cycle can serve as a good tool for
executing previously unpredictable program. For
example if you need to wait before input signal is
in a specific level of voltage you can use this
construction:

int inputVariable = 0;
while (inputVariable < 100)
{

digitalWrite(13,HIGH);
delay(10);
digitalWrite(13,LOW);
delay(10);
inputVariable = analogRead(2);

}

Cycle ensures LED to blink until the input
signal is in specific level. With this the user is
given an indication that the input signals level has
to be increased.

። 26 ።

3.1. WORKSHEET. Button and Light-emitting diode

Aim
Create you first program which will turn on

the LED diode after reacting to a pressed button.

Materials needed
Material/part Amount

Mounting cord 1

Scheme to be created

This scheme allows creating circuit that ensures that the
LED shines when the button is pushed. Reaction to the
pressure on the button is ensured by MC Arduino, unlike
the examples shown in chapter about basics of electronics.
In the constructor the buttons P1 and P2 are connected to
collective output – 0 pole. That means that the scheme can
by simplified as it is shown in the image “Needed materials
and circuit”, there’s no need to use extra details.

Steps of work
1. Create the scheme of the circuit.
2. Write the given program.
3. Upload the program to MC Arduino memory

as it was shown in chapter for preparing
programming environment.

4. Push the button.

void setup()
{

pinMode(13,OUTPUT);
 //set MC leg No13 as an output
pinMode(12,INPUT);
 // set MC leg No12 as an input
 //which will read buttons position

digitalWrite(12,HIGH);
//connect inner resistor
//so we wouldn’t have to use extra

schemes
}
void loop()
{

bool ButtonPosition = digitalRead(12);
 //read position of MC leg No 12
digitalWrite(13,not(ButtonPosition));
 //set up MC legs No13 position
 //according to read value

}

Short explanation:
Initializations part:
• Similar as before the MC leg No13 has to be

defined as an output;
• MC leg No12 is defined as input which is

required for reading the position of the button.
• Resistor is connected to MC leg No12 so there

would be no need for outer circuits. This
resistor ensures MC leg No 12 to be in logical 1
level (+5V level) all the time until there are no
other sources of signal.

Cycles part:
• Positions variable ButtonPosition is created

with the logical type bool. It can take two
values – true (logical 1 or +5V) or false (logical 0
or 0V). Variables are used for short-term storage
of information. As long as their values are not
changed, it doesn’t change no matter the
process of execution. In this example if during
one execution of the cycle the variable has an
assigned value then the value doesn’t change in
any of the other times of execution of the cycle
unless it is changed by some event or command
in the program.

። 27 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

• Command digitalRead(12) allows to read the
logical value (1 or 0) of MC leg No12. Read
value is saved in the variable buttonPosition.

• Command digitalWrite(13,…) allows to
install the level of MC leg No13.

• In this command you need to also use not()
which reverses the logical value written in
the brackets; if logical 0 is shown it is turned
into logical 1.

Button and LED

This is required because we use inner resistor;
if there are no other signals the MC legs
No12 level will be +5V or ligical1. If we don’t
use not() operator LED will turn on
when the button isn’t pushed; reversed to the
usual.

። 28 ።

3.2. WORKSHEET. Staircase lighting

Aim
 Create a program that allows turning on or off
the LED by using two buttons, imitating staircase
by turning on the light with one button but
turning off the light with another.

Materials needed
Material/part Amount

Mounting cord 2

Scheme to be created

This scheme allows creating circuit that ensures that the
LED shines when the button is pushed. Reaction to the
pressure on the button is ensured by MC Arduino, unlike
the examples shown in chapter about basics of electronics.
In the constructor the buttons P1 and P2 are connected to
collective output – 0 pole. That means that the scheme can
by simplified as it is shown in the image “Needed materials
and circuit”, there’s no need to use extra details.

Steps of work
1. Create the scheme of the circuit.
2. Write the given program.
3. Upload the program to MC Arduino memory

as it was shown in chapter for preparing
programming environment.

4. Enjoy your staircase lighting system.

bool LEDposition = false;
//variable will save LEDs
//value

void setup()
{

pinMode(13,OUTPUT);
 //set MC leg No 13 as an output
pinMode(12,INPUT);
 //set MC leg No12 as an input
 //which will read buttons position
digitalWrite(12,HIGH);
 //connect inner resistor
 //so we wouldn’t have to use extra
 //schemes
pinMode(11,INPUT);

 //set MC leg No11 as an input
 //which will read buttons position
digitalWrite(11,HIGH);
 //connect inner resistor so we
 //wouldn’t have to use extra schemes

}
void loop()
{

bool ButtonPosition_1 = digitalRead(12);
 // read position of MC leg No12
bool ButtonPosition_2 = digitalRead(11);
 // read position of MC leg No11
if((ButtonPosition_1 && ButtonPosition_2)

 == false)
 //check if any of the buttons is pushed
{

LEDposition =
not(LEDposition);

 //if is then LED position is changed
 //to oposite
}
digitalWrite(13,LEDposition);
 //set up new LEDs position

delay(300);
}

Short explanation:
Global variables:
• One variable is added which is accessible in both

functions – setup() and loop(), and also is meant
to keep the LEDs position outside every
execution of functions cycle.

። 29 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

Initialization part:
• Another buttons input is added to

initialization form the previous task – MC
leg No11 which is precisely defined as MC
leg No12.

Cycle part:
• Similarly to the previous task two

positions of the buttons are defined –
Buttons_Position_1 & Buttons_Position_2
which will accordingly keep MC legs No11
and No12 position for one cycle.

• There is an if condition which allows to
evaluate positions of the buttons. Here it
checks whether any of the buttons are
pushed. For this purpose we use logical
operator && - logical AND.

• If one of the buttons is pushed then the value
of the condition is logical 0 or false. In this
case the position of the LED has to be
changed to the opposite. If the LED is on it
has to be turned off and vice versa.

• Then the new position of the LED is saved.
• Small pause of the programs execution has to

be added so the programs actions speed
would be in sync with humans actions speed.
This is ensured by using the command
delay(300) — stop the execution for 300
milliseconds.

Staircase lighting

In this case it will give the value true only if
both of the operands (buttons positions) are
in logical level 1; none of the buttons are
pressed and inner resistor ensures that they
have logical voltage level 1.

። 30 ።

3.3. WORKSHEET. Light-emitting diodes brightness

Aim
Create a program which allows changing the

brightness of the LED using two buttons where
one makes the LED become brighter, but the other
dims it until it turns off.

Materials needed
Material/part Amount

Mounting cord 2

Scheme to be created

This scheme allows creating circuit that ensures that the LED
shines when the button is pushed. Reaction to the pressure
on the button is ensured by MC Arduino, unlike the
examples shown in chapter about basics of electronics. In
the constructor the buttons P1 and P2 are connected to
collective output – 0 pole. That means that the scheme can
by simplified as it is shown in the image “Needed materials
and circuit”, there’s no need to use extra details.

Steps of work
1. Create the scheme of the circuit.
2. Write the given program.
3. Upload the program to MC Arduino memory

as it was shown in chapter for preparing
programming environment.

4. Enjoy your brightness changer at work.

int ledLeg = 13;
int increase = 0;
int brightness = 127;

void setup()
{

pinMode(ledLeg,OUTPUT);
analogWrite(ledLeg,brightness);
pinMode(11,INPUT);
pinMode(12,INPUT);

}
void loop()
{

bool ButtonPosition_1 = digitalRead(12);
 // read position of MC leg No12

bool ButtonPosition_2 = digitalRead(11);
 // read position of MC leg No11
if(ButtonPosition_1 == true)
 { increase = 5; }
if(ButtonPosition_2 == true)

 { increase = −5; }
spozums = spozums + pieaugums;
if(brightness >= 255) { brightness = 255; }
if(brightness <= 0) { brightness = 0; }
analogWrite(ledLeg,brightness);
delay(30);

}

Short explanation:
Global variables:

• Here we define three variables:
o ledLeg – shows to LED built-in into

the MC.
o Increase – increase in brightness. If it

is positive then the brightness slowly
reaches its maximum, but if negative
then slowly extinguishes.

o Brightness – brightness which is
saved for determining the brightness
of the LED. This variable can take
values from 0 to 255.

Initialization part:
• As before, inputs and outputs are

determined but also the starting brightness
of the LED is determined.

። 31 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

Cycle part:
• Similarly to the previous task two

positions of the buttons are defined –
Buttons_Position_1 & Buttons_Position_2
which will accordingly keep MC legs No11
and No12 position for one cycle.

• We add a condition which allows changing
the brightness of the LED to 5 or -5
according to which button is pushed. If
none of the buttons are pushed the
brightness doesn’t change.

• After this we change the brightness of the
LED according to the set increase.

• Extra check-ups need to be set up so the
new brightness value would be kept in the
range of the set interval.

• At the end of the cycle there is a small
delay so we could see the change in
brightness.

Interesting! For those who think this task is too
simple, you can add to the program to make the
brightness stop changing when both buttons are
pushed.

LEDs brightness

። 32 ።

3.4. WORKSHEET. Changing LEDs blinking speed

Aim
Create a program which allows to regulate the

speed of LEDs brightness change using two
buttons where one makes the speed increase, but
the other slows it.

Materials needed
Material/part Amount

Mounting cord 2

Scheme to be created

This scheme allows creating circuit that ensures that the LED
shines when the button is pushed. Reaction to the pressure
on the button is ensured by MC Arduino, unlike the
examples shown in chapter about basics of electronics. In
the constructor the buttons P1 and P2 are connected to
collective output – 0 pole. That means that the scheme can
by simplified as it is shown in the image “Needed materials
and circuit”, there’s no need to use extra details.

Steps of work
1. Create the scheme of the circuit.
2. Write the given program.
3. Upload the program to MC Arduino memory

as it was shown in chapter for preparing
programming environment.

4. Enjoy your brightness changer at work.

int ledLeg = 13;
int time = 500;

void setup()
{

pinMode(ledLeg,OUTPUT);
pinMode(11,INPUT);
pinMode(12,INPUT);

}
void loop()
{

bool ButtonPosition_1 = digitalRead(12);
 // read position of MC leg No12
boolButtonPosition_2 = digitalRead(11);
 // read position of MC leg No11
if(PogasStavoklis_1 == true)
 { time = time + 50; }
if(ButtonPosition_2 == true)
 { time = time − 50; }
if(time >= 1000) { time = 1000; }
if(time < 0) { time = 0; }
digitalWrite(ledLeg, HIGH);
delay(time);
digitalWrite(ledLeg, LOW);
delay(time);

}

Short explanation:
Global variables:

• Two variables are defined:
o ledLeg - shows to LED built-in into

the MC.
o time – time in milliseconds with

which the position of the LED is
changed.

Initialization part:
• Inputs and output are determined.

Cycle part:
• Two positions of the buttons are defined –

Buttons_Position_1 and Buttons_Position_2
which will accordingly keep MC legs No11
and No12 position for one cycle.

። 33 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

Interesting! If the task seems simple you can
add to the program so the blinking speed doesn’t
change when both buttons are pushed.

Changing the blinking speed of the LED

• A condition which allows regulating the
intervals of turning on and off the LED is
added. The intervals with a step of 50
milliseconds.

• Extra check-ups need to be set up so the new
value of time is kept in the interval of 0 to
1000 milliseconds.

• After that the LED is turned on or off with
the new delay value.

። 34 ።

3rd chapters
annex

You can look at flowcharts of the programs from this chapter.

Task 1 - flowchart for turning on the LED.

Task 2 - flowchart for staircase lighting system.

። 35 ።

Learn the basics of robotics “SumoBoy” v 2.0 3. Beginning programming

Task 3 - flowchart for LEDs brightness.

። 36 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Task 4 - flowchart for change in blinking speed of the LED.

። 37 ።

4. SEMICONDUCTORS

4.1. Aim
The aim of this topic is to be introduced to the

most used elements of semiconductors in
electronics which ensure the execution of different
tasks. For example, semiconductors allow creating
an electronic switch which then serves a specific
function like turning the device on and off.

4.2. Theoretical part
Semiconductors are not especially good

conductor of current and not especially good
insulator, this is where the name semiconductor
comes from. Semiconductors are Silicon (Si) and
Germanium (Ge).

 To increase semiconductors ability to
conduct electricity they are mixed with different
admixtures – donors and acceptors. If we add
donors we will get negatively charged n-type
semiconductor which will have a lot of free
electrons. If we add acceptors we will get
positively charged p-type semiconductor with a lot
of free holes which can be filled by electrons.

n and p type semiconductors are used to create
electronic elements like diodes, transistors, sun
batteries, microchips and others. Most of the
modern devices couldn’t exist without
semiconductors.

4.2.1. p-n junction
By connecting n and p type semiconductors we

create p-n junction. As we previously found out
n-type semiconductors have a lot of electrons and
p-type semiconductors have a lot of holes. By
connecting p and n type semiconductors the
electrons from n region start to move to the holes
in p region, neutralizing each other. This process
continues until a barrier layer is formed at the
point where the two materials collide, preventing
electrons from entering the holes.

p-type semiconductor Barrier layer

 If we add an additional source of voltage to
the p-n junction where p-type is connected to the
positive end and n-type is connected to the
negative end and the voltage will be at least 0.7 V
then the barrier layer will decrease and electrons
will start to flow through the p-n junction. This is
called the forward bias p-n junction.

Different conductors, semiconductors
and insulators

p-n junction

n-type semiconductor

Forward bias p-n junction

p-type semiconductor Barrier layer n-type semiconductor

። 38 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

If the added voltage will be connected to the
p-n junction in a way where p-type is connected to
the negative end and n-type is connected to the
positive end then the barrier layer will increase
and the current won’t flow through this layer. This
is called the reverse bias p-n junction.

4.3.1. Diodes properties
Simpler devise which can be created by putting

together p and n type semiconductors is a diode.
Its main properties are that it can let the current go
through in only one direction.

Diode starts conducting current when its anode
is at least 0.7 V more positive than its cathode.
That means, if the voltage is less than 0.7 V the
diode won’t conduct current. Because diode is the
active component it will sustain its voltage at 0.7 V
between its terminals while the current flowing
through the diode will quickly increase. Diode is
meant for certain amount of current, if the meant
amount is exceeded then the diode can start to
heat up and burn out.

Denotation Schemes symbol

Diode is indicated by an arrow with a
straight line at the end of it. The arrow
indicates in which direction does the
diode conduct current.

Diodes denotation and construction

 structure for n and p type semiconductors

Hole Free electron

Semiconductor atom

Adulterant atom
(donor)

Adulterant atom
(acceptor)

Covalent bonds

p-type semiconductor n-type semiconductor

By connecting the diode in reverse bias where
the cathode is more positive than anode the
current won’t flow through the diode. Every diode
in meant to withstand a certain voltage in reverse
bias. If the voltage will be exceeded then the diode
will be passed it will start conducting current and
will be damaged.

4.3.3. Diodes parameters,
types, uses
There are many different diodes types and uses

but we will be looking at the simplest signal
diodes parameters, types and uses.

Signal diodes can be different; they are used in
the same way but their appearance and parameters
are different. Most commonly you will see two
types of signal diode bodies- black with a grey
stripe at the end or red glass with a black stripe at
the end. The stripes on diodes body usually show
the location of the cathode; with this you can
determine in which direction you should connect
the diode to the scheme.

p-type semiconductor Barrier layer n-type semiconductor

Reverse bias p-n junction

4.3. Diodes

In the previous schemes we already looked at
light-emitting diodes (LED). LED is a special type
of diodes which emits light unlike the other
diodes. LED has completely different body which
is made of transparent plastic that protects the
diode and lets it emit light. Like the other diodes
LED conducts the current in only one way so it is
very important to connect it to the scheme
correctly. There are two safe ways how to
determine the direction of the diode:

። 39 ።

Learn the basics of robotics “SumoBoy” v 2.0 4. Semiconductors

Diodes are different with their parameters.
Diodes parameters can be found out by looking at
the manufacturers technical specifications.
Manufacturer of the device has created a datasheet
for each electrical component; in it the
manufacturer describes all that the user of the
device needs to know. To find the diodes datasheet
you have to know the name of the diode; usually it
is written in small letters on the body of the diode.
You can find diodes datasheet by writing its
number in internet browser and adding
“datasheet”. Most of the datasheets are in English.
Diodes are characterised by many different
parameters but here we will look at the two most
important:

• Maximum forward current IF determines the
amperage of the current that flows through
the diode. Diode has a small resistance so by
Ohm’s law it releases power in the form of
heat. If the allowed amperage is exceeded
then the diode overheats and burns out.
Resistors are often used in series with diodes
to limit the current.

• Maximum inverted voltage UR determines
the voltage allowed to be put on diodes
terminals in inverted direction before
crossover occurs. If this voltage is exceeded
the diode gets crossover starts conducting
current and gets damaged.

Diodes uses:
• Components protection. Diodes can be used

to protect components from different inverted
voltages and currents. Diode can be used to
protect scheme if the battery is inserted in the
wrong way because diode allows the current
to flow in only one direction. It protects
schemes from elements with inductive
elements in them (coil, motor). Coils resist
changes in current and, if we turn on a motor
it can create dangerously large current which
flows in the opposite direction of the normal
current. By inserting a diode this current
flows through the coil itself and doesn’t
damage the scheme.

Diode as a protection in motor

Alternating currents rectification
into direct current

4.4. Light-emitting diodes

Most commonly seen bodies of signal diodes

• Attaining direct current. Diodes are used to
change alternating current into direct current;
this process is called the rectification.
Alternating current polarity changes regularly.
Diode allows it to flow in only one direction
rectifying it into direct current.

• In the cathodes side of the diode its side is
chipped.

• Anodes leg usually is longer than the
cathodes leg.

Determining LEDs cathode and anode

። 40 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

LED parameters for insulators

Diodes parameters

Semiconductor
Wave
length
(nm)

Colour
Voltage (V)
for LEDs UR

(20 mA)
GaAs 850–940 Infrared 1,2

GaAsP 630–660 Red 1,8
GaAsP 605–620 Orange 2,0

GaAsP:N 585–595 Yellow 2,2
AlGaP 550–570 Green 3,5

SiC 430–505 Blue 3,6
GaInN 450 White 4,0

LED is one of the best light sources. Unlike
incandescent light bulb LED transforms most of
the power into light not warmth; it is more
durable, works for a longer period of time and can
be manufactured in a smaller size.

LED colour is determined by the
semiconductors material. If normally diodes are
made from silicon then LEDs are made from
elements like gallium phosphate, silicon carbide
and others. Because the semiconductors used are
different the voltage needed for the LED to shine
is also different. In the table you can see with
which semiconductor you can get a specific colour
and the voltage needed to turn on the LED.

4.5. Transistor
Bipolar transistor is created by connecting two

p-n junctions. Transistor usually is a device with
three terminals: collector (C), base (B) and emitter
(E). Transistors are used in two ways: as
non-contact switch and as voltage and currents
amplifier.

Apzīmējums Shēmas simbols

C

B

E

NPN transistor – emitter arrow is
in the direction away from the
base; it shows that the signal’s
current flows from base to emitter.

C

B

E

PNP transistor – emitter arrow is in the
direction towards the base; it shows
that the signal’s current flows from
emitter to base.

When LED is connected to voltage and turned
on a very large current starts to flow through it
and it can damage the diode. That is why all LEDs
have to be connected to current limiting resistor.

Current limiting resistors resistance is
determined by three parameters:

• Current that can flow through the LED - ID.
• Voltage that is needed to turn on the LED -

UD.
• Combined voltage for LED and resistor – U.

To calculate the resistance needed for a diode this
is what you have to do:

1. Find out the voltage needed for the diode to
work UD; you can find it in the diodes
parameters table.

2. Find out the amperage needed for the LED to
shine ID; it can be found in the LEDs
datasheet but if you can’t find it then 20 mA
current is usually correct and safe choice.

3. Find out the combined voltage for the LED
and resistor, usually it is the feeding voltage
for the scheme.

4. Insert all the values in this equation:

5. You get the resistance for the resistor for safe
use of the LED.

6. Find resistors nominal that is the same or
bigger than the calculated resistance.

Example

We will use orange LED. Orange LED needs
voltage UD = 2 V. Current flowing through the
LED will be ID = 20 mA. Voltage for the whole
scheme will be U = 5 V. insert all the values in the
equation:

0, 02
3

0, 02
Ω

 To turn on an orange LED you need resistor
with 150Ω or bigger resistance.

Scheme for connecting the LED

። 41 ።

Learn the basics of robotics “SumoBoy” v 2.0 4. Semiconductors

4.5.2. PNP and NPN operations
Transistor is a device which is managed with

current. The amount of the current at transistors
base determines its position. If transistors base has
no current it will be turned off. If transistors base
has a small current, then it will be turned on and
work as an amplifier. The stronger the current at
the base the stronger will be the current flowing
through collector and emitter. If the current at the
base is strong enough the transistor will be
completely open and the current between the
collector and emitter will flow in the same way as
in a turned on switch.

Transistor can be:
• Turned off – there is no currents between

collector and emitter.
• Active – transistor is working as an amplifier.
• Saturated – transistor is completely opened

and works as a turned on switch.

For turning on the NPN transistor the base has to
have a more positive voltage than the emitter; that
is why the base has to be connected to positive
voltage. With PNP transistors it is the opposite –
emitter has to have more positive voltage than
base so the emitter has to be connected to the
positive terminal but the base to the negative.

Transistor circuits

Comparison of PNP and NPN transistors construction

NPN PNP

Transistor is made by adding an extra
semiconductor p-n layer to junction’s diode. You
can think of a transistor as two diodes put together.
Bipolar transistor is constructed from two p-n
junctions creating three terminals: collector, base
and emitter. p-n junction can be put together in two
ways: n-p-n and p-n-p, that creates two types of
transistors – NPN and PNP. Both transistors work
in the same way; the difference is with connecting
the transistor to the scheme and its feeding
polarities.

4.5.1. Transistors construction This also changes the currents direction
accordingly. Transistors base can have only very
small current flowing through it so it is important
to use current limiting resistor R1 so the
transistor wouldn’t be damaged.

4.5.3.Transistors body and
parameters
The same as with diodes, transistors also have

different parameters. One of the most popular is
the TO-92 and TO-220. You can see that these
bodies are different with their size and
appearance. The size of the body is determined by
the need to disperse power so the transistor
wouldn’t overheat and burn out while in use. The
bigger the body of the transistor the more power
can be dispersed and stronger current can be
conducted.

። 42 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

While using transistor it is important to know
the position of its terminals (collector, base, and
emitter). However, it can be different for each
resistor so it is important to look at the transistor
data. The same as with diodes transistor’s name
can be found on its body and by writing it in the
internet browser you can find its datasheet where
you will see the positioning of its terminals.

While using a transistor it’s important to know
a couple of parameters that determine transistors
operations:

1. Maximum voltage for collector and emitter
UCE0 – determines how strong voltage can be
used while using the transistor for it to not be
damaged.

2. Maximum collectors current IC – determines
how strong current can flow through the
transistor for it to not be damaged. After
exceeding this amount the transistor
overheats and burns out.

3. Currents amplification coefficient β –
determines by how many times will the
collectors current change when the base
current is changed IC = IBβ.

4. Maximum voltage for the collector and base
UCBO – determines how strong base current IB
flows through the transistor; to not damage
the transistor this value should be kept under
the maximum.

 Transistors longevity will be ensured by
following the maximum parameters set by the
manufacturer.

TO-92 TO-220

Transistors

Positioning of the terminals for
NPN transistor BC547C

። 43 ።

4.1. WORKSHEET. Diodes circuit

Aim
Novērot diodes pamatīpašību — strāvas laišanu

vienā virzienā.

Steps of work
1. Connect the circuit shown in the image

“Diode connected in the direction of the
current”.

2. Connect the circuit to a source of voltage and
push the button.

3. See if the light-emitting diode shines.
4. Measure the voltage on the diode and

compare it with the voltage that theoretically
should be on the diode. How does it differ?

5. Connect the circuit shown in the image
“Diode connected in the opposite direction
of the current” (diode changes its direction).

6. Connect the circuit to a source of voltage and
push the button.

7. See if the light-emitting diode doesn’t shine.

Material/part Amount
Button 1
Diode PH4148 1
Resistor (330Ω) 1
Light-emitting diode 1
Mounting cord 3

Schemes to be created

+5V 1 2

Elements in series circuit with diode in the direction of the current

+5V

Elements in series circuit with diode in the opposite
direction of the current

Materials needed

። 44 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Diode connected in the opposite direction of the current

Diode connected in the direction of the current

። 45 ።

4.2. WORKSHEET. Light-emitting diodes voltage

Aim

1. Connect the circuit shown in the image.
2. Connect the circuit to a source of voltage.
3. See if every diode shines in different

brightness.
4. Using multimeter for measuring direct

current and measure voltage for every diode
in the points 1 and 2.

5. Compare with theoretical voltages of LED.
How do they differ?

Materials needed
Material/part Amount

Resistor (330Ω) 5
LED – white, yellow, blue, green,
red 5

Mounting cord 2

Scheme to be created

1
2

+5V

Parallel circuit with multi coloured LEDs

LEDs voltage

Observe the difference between different light-
emitting diodes.

Steps of work

። 46 ።

4.3. WORKSHEET. RGB Light-emitting diode

Aim
Learn RGB LED use and main properties of

diodes.

Scheme to be created
+5V Red

Green

Blue

RGB Diode will shine in white colour no matter which button
is pushed

+5V Red

Green

Blue

Diode will shine in either yellow or light blue colour
depending on which button is pushed.

Materials needed
Materiāls/detaļa Skaits

Diode PH4148 4
Button 2
Resistor (330Ω) 3
RGB LED 1
Mounting cord As much as needed

Steps of work
1. Connect the circuit shown in the image

“RGB diode’s managing without diodes”.
2. Connect the circuit to a source of voltage.
3. Push one of the buttons and then the other

button.
4. See if the RGB diode shines in white colour

after pushing bolt buttons.
5. Connect the circuit shown in the image

below the previous.
6. Connect the circuit to a source of voltage.
7. Push one of the buttons and then the other

button.
8. See if the RGB diode shines in yellow colour

after pushing the first button and in light
blue colour after pushing the other button.

9. Pushing both buttons at the same time will
create white colour.

። 47 ።

Learn the basics of robotics “SumoBoy” v 2.0 4. Semiconductors

RGB diode’s managing with diodes

RGB diode’s managing without diode

። 48 ።

4.4. WORKSHEET. RGB Light-emitting diodes
 operating with program

Aim
Learn how to operate RGB diode with program.

Materials needed
Material/part Amount

Resistor (330Ω) 3
RGB LED 1
Mounting cord As much as needed

Scheme to be created

D2

D3

D4

Arduino
Micro

Red

Green

Blue

Scheme to operatr RGB diode with program

Steps of work
1. Connect the circuit shown in the image.
2. Write the given operating program.
3. Connect the circuit to a source of voltage.
4. Upload the program to Arduino memory.
5. See how after every half a second the diodes

colour changes.

void setup ()
{

pinMode(4,OUTPUT)
 //set up MC leg 4 as output
#define greenLEDON digitalWrite(4,HIGH)
 //define how to turn on green diode
#define greenLEDOFF digitalWrite(4,LOW)
 // define how to turn off green diode
pinMode(3,OUTPUT);
#define blueLEDON digitalWrite(3,HIGH)
#define blueLEDOFF digitalWrite(3,LOW)
pinMode(2,OUTPUT);
#define redLEDON digitalWrite(2,HIGH)
#define redLEDOFF digitalWrite(2,LOW)

}
void RGBColor (boolean red,boolean green,

{

boolean blue)
//create function for operating RGB diode

if (red){redLEDON;} else {redLEDOFF;}
 //if red == 1, then turn on the red
 //diode, if not diode turns off

if (green){greenLEDON;} else {greenLEDOFF;}
if (blue){blueLEDON;} else {blueLEDOFF;}

}
void loop ()
{

//turn on 7 colours for RGB diode
RGBColor(1,0,0);

//Red
delay(500); //wait for half a second
RGBColor(0,1,0);

//Green
delay(500);
RGBColor(0,0,1);

//Blue
delay(500);
RGBColor(1,1,0);

//Yellow
delay(500);
RGBColor(0,1,1);

//Light Blue
delay(500);
RGBColor(1,0,1);

//Violet
delay(500);
RGBColor(1,1,1);

//White
delay(500);

}

። 49 ።

Learn the basics of robotics “SumoBoy” v 2.0 4. Semiconductors

Managing RGB diode with program

። 50 ።

4.5. WORKSHEET. Transistors usage

Aim
Learn transistors operations.

Steps of work
1. Connect circuit shown in the image

“Turning on the transistor with a button”.
2. Connect circuit to a source of voltage.
3. Push the button.
4. See if the LED turns on.
5. Connect the circuit shown in the image

below.
6. Connect circuit to source of power.
7. DO NOT connect the wires under no

circumstances.
8. Put a finger to each wire.
9. See if the diode lightly shines.

Materials needed
Material/part Amount

Button 1
Resistor R2 (10 kΩ) 1
Resistor R1 (220 Ω) 1
LED 1
NPN transistor BC517 1
Mounting cord As much as needed

Scheme to be created

R1

+5V

C
B

E

R2

R3

S1

VT1 VD1

After pushing the button transistor will turn on and the LED
will start to shine

Finger

+5V

R1

R3

Putting finger at the place shown the LED will start to shine

። 51 ።

Learn the basics of robotics “SumoBoy” v 2.0 4. Semiconductors

Turning on the transistor with a finger

 Turning on the transistor with a button

። 52 ።

4.6. WORKSHEET. Multivibrator

Aim

Material/part Amount
Resistor R1, R4 (330 Ω) 2
Resistor R2, R3 (10 kΩ) 2
NPN transistor BC517 2
LED 2
Capacitor (100 µF) 2
Mounting cord As much as needed

Steps of work
1. Connect the circuit shown in the image

“Multivibrators circuit”.
2. Connect circuit to a source of voltage.
3. See that the diodes blink alternating.
4. Switch the resistors R2, R3 or capacitor;

the blinking speed will change.

Scheme to be created

+5V

+ +

R1 R4R2 R3

Correctly connected circuit will create alternating blinking
lights

Multivibrator

Learn about interactions of different
components.

Materials needed

። 53 ።

4.7. WORKSHEET. Multivibrator with program

Material/part Amount
Resistor R3, R4 (330Ω) 2
Resistor R1, R2 (1 kΩ) 2
NPN transistor BC517C 2
LED 2
Mounting cord As much as needed

Scheme to be created

D5

Arduino
Micro

+5V

D6

U1
R1

R2

R3 R4

Scheme how to make multivibrator with program.

Steps of work
1. Connect circuit shown in the image.
2. Connect circuit to a source of voltage.
3. Write the given program.
4. Upload the program to Arduino and see the

alternating blinking lights.

void setup ()
{

pinMode(5,OUTPUT);

�������� digitalWrite(5,HIGH)
//define how to turn on diode No1
//make definition for turning on diode No1

���� led1OFF digitalWrite(5,LOW)
//define how to turn off diode No1
//make definition for turning off diode
//No1
pinMode(6,OUTPUT);
���� led2ON digitalWrite(6,HIGH)
���� led2OFF digitalWrite(6,LOW)

}
void loop ()
{

led1ON;led2OFF;
//turn on diode No1 turn off diode No2
delay(500); //wait for half a second
led1OFF;led2ON;
//turn off diode No1 turn on diode No2
delay(500); //wait half second

}

Aim
Learn how to operate transistor with

program.

Materials needed

 //set MC leg 5 as an output

። 54 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Multivibrator with program

። 55 ።

5. SENSORS

5.1. Aim
Aim fort his topic is to give an overall

knowledge about sensors, their types, most relevant
operating principles and potential uses in robotics.

5.2. 5.2.Theoretical part

Influence
type

Measurement – what can be
quantitatively measured

Optical –
light

influence

Decrease in light intensity – the amount of
radiated light an irradiated object absorbs
(keeps in itself and doesn’t reflect). This type
of sensor is digital photo-camera and
distance meter and other similar sensors.

Mechanical
influence

These sensors are widely spread and used to
measure weight, pressure, speed,
acceleration, position, tensile strength. It is
important to remember that even a button is
a sensor with which, for example, you can
determine collision with an obstacle.

Electric
influence

Magnetic fields polarization, flow and
strength (similar to a compass).

Magnetic
influence

Height of temperature, its changes and
conductivity – how well a certain material
conducts heat.

Thermic
influence
or heat

influence

Electric charges size, voltage, current,
alternating currents phase, polarization,
electrical conductivity.

Properties of a sound wave – amplitude,
frequency, polarization, frequency spectrum,
speed of sound etc. sound amplitude
(loudness) and frequency (tone) is enough for
simpler applications.

Biological
and chemical

influence

The concentration of gas or liquid in a
particular environment. Used in gas analyzers
and different type of leak detectors for
chemical substances.

Specific regularities and material properties are
used in order to make these sensors work. Here
are only a few of those:

1. Faraday’s law of induction – conductive coil
resists changes in magnetic field by
generating electric current and voltage in the
opposite direction of magnetic field.

2. Photoconductivity – certain semiconductors
become better conductors after absorbing
electromagnetic radiation because its
conductivity or electrical resistance decreases.

Schematic overview of sensor

Sensor is an element which can turn a physical
outer stimulus into an output signal which then
can be used for further analyses, management or
decision making. People also use sensors like eyes,
ears and skin for gaining information about the
outer world and act accordingly to their aims and
needs.

From the view of Norbert Wiener, the
originator of cybernetics – robot is a manageable
system which uses its senses or input and changes
its actions accordingly to reach a certain goal. This
is why robot’s input is made up of one or more
sensors which give information used in managing
the robot. A schematic overview of sensors
operation is shown in the image.

Usually every natural phenomenon –
temperature, weight, speed, etc. – needs specially
customized sensors which can change every
phenomenon into electronic signals that could be
used by microprocessors or other devices. Sensors
can be divided into many groups according to the
physical nature of their operations:

Sound –
acoustic
influence

። 56 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

However, for some occasions where some specific
properties of sensor or observable object are
important it is useful to know certain
characteristics.

Remember! There are no universal sensors that
would be able to serve all proposes. Before you
choose a sensor you have to know the main
characteristic you need and only then you can start
looking for specific sensor.

The most important characteristics for
choosing a sensor are shown in the table.

 These regularities and their wide use in every-
day life is a good reason for the reader to find
practical interest in physics during their time in
school or facilities for higher education. Sensors
can be found everywhere – radios, cars,
refrigerators, vacuums, medical machinery and
many others. If these regularities were not
discovered and engineers hadn’t found their
practical use, automation wouldn’t exist.

5.2.1.How to choose a sensor

Characteristics
group Characteristic Short explanation

Environmental
factors

Performance temperature range
in which sensor doesn’t lose its
performance quality

If work mode takes place in specific conditions, for example Latvia’s
winters can reach -30 C̊, you should choose a sensor with the
appropriate indications for its use in the technical documentation.

Humidity Resistance to humidity is very important if the sensor has to
operate outdoors.

Corrosion resistance Resistance to corrosion is also connected to operating outdoors.

Size Sometimes sensors size can influence its practicality in specific
product.

Overly intensive exposure This indicator is important for a temperature sensor such as
temporary exceedances of temperature would continue to operate.

Resistance to mechanical
exposure – vibrations, falling
from a height

Usually this characteristic is important for mobile devices – mobile
phones, cars and other environments that are connected to
vibrations.

Energy consumption
Especially important characteristic for devices that work on batteries
(devices with limited energy). In these cases sensors precision and
other properties are sacrificed to save energy.

Self-test Characteristic is important in autonomous devices which have to
ensure self-sufficient work when human interference is impossible.

Economic
factors

Price Important in the case of limited financial resources.

Accessibility Important in mass production when you have to be sure that you
can access the needed amount.

Work life Work life determines the duration according to technical
documentation; during this time sensors actions are predictable.

Sensor
operation

factors

Sensitivity The smallest change in measured aspect that can be determined.
Working range The interval of measured aspect that can be determined.
Stability Resistance to noises.
Repeatability Difference in measurements in the same conditions.

Linearity Determines measurements dependence on changes in conditions if
they are continuously and evenly changed.

Error Measurements deviation from its fixed value.
Response time Time needed to make every next measurement.

Frequency The amount of measurements that can be made in a specific amount
 of time.

 The choice of sensor is usually determined by
practical measures, size, weight, and price.

። 57 ።

Learn the basics of robotics “SumoBoy” v 2.0 5. Sensors

5.2.2.Examples of sensors
Different popular sensors used by robot enthusiasts. (Images from www.robotshop.eu)

Sensor Symbol in scheme Short description

1

3
2 1

2

3
Potentiometer – usually a three terminal device. It consists of resistor
with added sliding contact and joystick. By turning the joystick the
resistance between the middle and the side terminals changes. It is
often used for regulation or as a tilt angle sensor, for example, in
servomotors.

to
Thermistor – resistor which resistance changes depending on the
temperature. It consists of special ceramics or polymers and it is used
to accurately measure temperature in small range.

Photo-resistor – makes the electrons in it much more mobile by
changing its resistance depending on the intensity of the light.

No general symbol

“Parallax Ping” Ultrasonic distance sensor – measures the time in
which the ultrasound echoes. Knowing the speed of the ultrasound used
it is possible to calculate the distance to closest object or obstacle.

No general symbol

“Lynxmotion” Quadrature motor encoder – creates many impulses in
every motors rotation field; by making one full rotation a small piece of
metal or magnet situated on special plate creates an impulse which is
detected by microprocessor that calculates the real rotation speed of the
motor.

Optocoupler – device used as reflected lights sensor. Optocoupler
consists of infrared light diode and phototransistor. The light emitted
by the diode reflects from a surface and goes to phototransistors base.
If there is a current in transistors base it begins to conduct current
between collector and emitter. the amount of reflected light determines
the amount of the current; this affects voltage on the transistor which is
measured

No general symbol

SHARP distance sensor – uses infrared light which is emitted in the
form of impulses and the reflected impulse is received in miniature
photoelectric array. The distance from the sensor to the object from
which the impulse reflected can be calculated depending on the specific
photocell that has turned on. The distance is coded using voltage in the
range of 0-5 V; this allows the microprocessor to interpret the
measurement.

No general symbol

“MediaTek AGPS” sensor – much more complicated than previous
sensors that determined GPS coordinates. They are obtained by using
Data exchange protocol and appropriate software microcontroller. These
sensors can be found in mobile phones and other portable devices.

Nowadays the variations of sensors are so big
thet it is imposible to include everything in this
learnig material.

However, the reader can easily go to one of the
internet stores meant for robotics enthuziasts and
learn more about the available sensors and their
characteristics.

። 58 ።

5.1. WORKSHEET. Angle sensor

Aim
 Learn the use of potentiometer.

Materials needed
Material/part Amount

Resistors R1, R2, R3 (1 kΩ) 3
Potentiometer R4, R5, R6 (50 kΩ) 3
Resistors R7, R8, R9 (330 Ω) 3
RGB LED 1
Mounting cord As much as needed

Scheme to be created
R
ed

G
reen

Blue

R9R8R7

+5V

R4

R1

D6
Arduino
Micro

A0

A1

D4
D5

A2

+5V

R5

+5V

R6

R2 R3

Changing the colour of RGB LED by using three
potentiometers

Steps of work
1. Connect the circuit shown in the image.
2. Connect the circuit to a source of voltage.
3. Upload the given program.
4. Turn potentiometers joysticks.
5. See how the RGB LED colour changes.

int greenPin = 6; //Green diodes pin
int bluePin = 5; //Blue diodes pin
int redPin = 4; //Red diodes pin
int pot1Pin = A0; //First potentiometer
int pot2Pin = A1; //Second potentiometer
int pot3Pin = A2; //Third potentiometer

void setup ()
{

���� redRead analogRead(pot3Pin)/4
//reads the value of the potentiometer
//and divides by 4a

��������� analogRead(pot2Pin)/4
//reads the value of the potentiometer
//and divides by 4

#define blueRead analogRead(pot1Pin)/4

}
void RGBLED (int red,int green,int blue)

{
 //function for managing the RGB diode

analogWrite(redPin,red);
 //shows the red colours identity
analogWrite(greenPin,green);
 //shows the green colours identity

analogWrite(bluePin,blue);
 //shows the blue colours identity
}
void loop ()
{

RGBLED(redRead,greenRead,blueRead);
 //turns on the RGB LED colour setup
 //function

}

//reads the value of the potentiometer
//and divides by 4

። 59 ።

Learn the basics of robotics “SumoBoy” v 2.0 5. Sensors

Angle sensor

። 60 ።

5.2. WORKSHEET. Temperature sensor

Aim
Learn how to use thermo-resistor and show the

gained information on the monitor.

Materials needed
Material/part Amount

Thermistor 1
Resistor (1 kΩ) 1
Mounting cord As much as needed

Scheme to be created

to

A2Arduino
Micro

+5V

Scheme of connecting thermo-resistor to measure
temperature.

Steps of work
1. Connect the circuit shown in the image.
2. Connect the circuit to a source of voltage.
3. Upload the given program.
4. Open series port monitor Tools → Series port

monitor
5. See the emitted temperature in series port

monitor.
6. Squeeze the sensor in your fingers and see the

change in temperature.

int termoPin = A2; //termo-resistors pin
float tempcoef = 0.07;

//resistors coefficient for changes
//in voltage

void setup ()
{

#define termoReading analogRead(termoPin)
// termo-resistors value reading
Serial.begin(9600);
//turning on communications with computer

}
void loop ()
{

float temperature = termoReading*tempcoef;
//calculating temperature
Serial.print (“Temperatura ir: “);
Serial.println(temperature);
//outputs information to series
//port monitor
 delay(20);

}

። 61 ።

Learn the basics of robotics “SumoBoy” v 2.0 5. Sensors

Temperatures sensor

። 62 ።

5.3. WORKSHEET. Light sensor

Material/part Amount
Resistor R1 (1 kΩ) 1
Photo-resistor R2 (20 kΩ) 1
Resistor R3 (330 Ω) 1
LED 1
Mounting cord As much as needed

Scheme to be created

D5

Arduino
Micro

A1

+5V

R1
R2

R3

Scheme for connecting photo-resistor with LED. Diode will
turn on when it gets dark.

Steps of work
1. Connect the circuit shown in the image.
2. Connect the circuit to a source of voltage.
3. Upload the given program.
4. Open series port monitor Tools → Series port

monitor
5. See the emitted light level in series port

monitor.
6. Cover the photo-resistor with your palm.
7. See whether the LED turns on.
8. If the LED doesn’t turn on, change

‘darktreshold’ value to lower than shown in
the series port monitor after covering the
diode.

int fotoPin = A1; //photo-resistors pin
int ledPin = 5; //LED pin
int darktreshold = 900; //darkness threshold

void setup ()
{

pinMode(ledPin,OUTPUT);
 //sets up LEDs leg as an output
#define fotoReading analogRead(fotoPin)
 //pfoto-resistors value reading
#define ledON digitalWrite(ledPin,HIGH)
 //define the turning off of the LED
#define ledOFF digitalWrite(ledPin,LOW)
 //define the turning on of the LED
Serial.begin(9600);

//turns on the communication with
//the computer}

void loop ()
{

Serial.print (“Light value is: “);
Serial.println(fotoReading);

//outputs information to series
//port monitor

if (fotoReading > darktreshold)
//true if the photo-read is bigger
//than darkness threshold

{
ledON; //if its dark turn on the LED

}
else
{

ledOFF;
 // if its light turn off the LED

}
}

Aim
Learn how to use photo-resistor.

Materials needed

። 63 ።

Learn the basics of robotics “SumoBoy” v 2.0 5. Sensors

Light sensor

። 64 ።

Material/part Amount
Resistor R1 (330 Ω) 1
Resistor R2 (10 kΩ) 1
Optopoupler ELITR9909 1
Mounting cord As much as needed

Scheme to be created

Connecting optocoupler and reading sensory data.

Steps of work
1. Connect the circuit shown in the image.
2. Attention – pay attention to correctly

connecting the sensor and the location of
MC legs!

3. Connect the circuit to a source of voltage.
4. Upload the given program.
5. Open series port monitor Tools → Series

port monitor
6. See the information shown in series port

monitor.
7. Put a white sheet of paper 4 mm from the

sensor.
8. See the sensors value.
9. Put a black sheet of paper 4mm from the

sensor.
10. See the sensors value.
11. Put a sheet of paper in front of the sensor in

multiple different distances.
12. See the results.

5.4. WORKSHEET. Obstacle and light reflection sensor

int optoPin = A1; //optocouplers sensors pin
int objecttreshold = 1000;
 //threshold of the object
int whitetreshold = 150;
 //white colours threshold
void setup ()
{ #define optoReading analogRead(optoPin)

 //optocouplers signal reading
Serial.begin(9600);

//turns on the communication with
 //computer}

void loop ()
{

Serial.print (“sensors reading is: “);
Serial.println(optoReading);
 //shows sensors readings
if (optoReading < objecttreshold)

{

//true if the reading is lower than
//objects threshold

Serial.println (“object is in front of
the sensor!”);
if (optoReading < whitetreshold)

{

//true if the reading is lower
//than the white colours threshold

 Serial.println (“object has a light
 colour!”);
}
else

{

//if the reading is bigger than the
white colours threshold

 Serial.println (“object has a dark
 colour”);
}

}
else

{

// if the reading is bigger than
//the objects threshold

Serial.println (“there is no object in
front of the sensor!”);

}
delay(500);

}

Aim
Learn how to use optocoupler.

Materials needed

። 65 ።

Learn the basics of robotics “SumoBoy” v 2.0 5. Sensors

Obstacle and light reflecting sensor

። 66 ።

5.5. WORKSHEET. Capacitive sensor

Material/part Amount
Resistor R1 (4.7 kΩ) 1
Resistor R2 (47 kΩ) 1
Resistor R3 (330 Ω) 1
Capacitor (15 pF) 1
LED 1
Capacitive button from aluminium or
copper foil

1

As much as needed

Scheme to be created

D5

Arduino
Micro

A3

R1

R2
R3

Cap
Sen

Scheme for capacitive button. The button is made out of
aluminium or copper foil and connected to the scheme with a
cord.

Steps of work
1. Connect the circuit shown in the image.
2. Connect the circuit to a source of voltage.
3. Connect aluminium or copper plate.
4. Upload the given program.
5. Touch the plate with your finger.
6. See if the diode turns on.
7. Open series port monitor Tools → Series

port monitor.
8. See the sensors readings in series port

monitor depending on whether or not you
are touching the button.

int capPin = A3; //capacitive sensors pin
int ledPin = 5; //diodes pin

void setup ()
{

���������� analogRead(capPin)
 //capacitive sensors readings
pinMode(ledPin,OUTPUT);
 //set up LED leg as an output
#define ledON digitalWrite(ledPin,HIGH)
 //turn on LED
#define ledOFF digitalWrite(ledPin,LOW)
 //turn off LED
Serial.begin(9600);

//turn on communication with the
//computer}

int CapacitivSen ()

{
//function for capacitive sensors readings

pinMode(capPin,OUTPUT); //set up the MC
//leg for readings as an output

digitalWrite(capPin,HIGH);
 //charge the sensor
pinMode(capPin,INPUT);
 //set up the MC leg for readings as an

 //input
int cap = capReading;
 //read the sensors value

return cap;
//function returns the read value

}
void loop ()
{

Serial.println(CapacitivSen());
 //reads the value on the screen
if (CapacitivSen()>2){

//turn on the diode if the value
//is bigger than 2

}
ledON;

else {
ledOFF;

}
delay(10);

}

Aim
Create simple capacitive sensor.

Materials needed

Mounting cord

። 67 ።

Learn the basics of robotics “SumoBoy” v 2.0 5. Sensors

Capacitive sensor

። 68 ።

6. MOTORS AND THEIR MANAGEMENT

6.1. Aim
The aim of this chapter is to introduce different

types of motors and the basics of their
management. This chapter does not give extensive
description of all electric motors, but only the ones
accessible in the constructor – permanent-magnet
DC motor and servomotor.

6.2. Theoretical part
Electric motor is an electro-technical device

which can change electrical energy into mechanical
energy; motor turns because there is electricity
flowing in its windings. Electric motors have seen
many technical solutions over the year from which
the simplest is the permanent-magnet DC motor.
Its construction and simplified scheme of
operation is shown in the image.

Without diving into details you have to know
that the spinning force F is directly proportional to
current I and magnetic field strength B. Because
of this – the stronger the magnets the bigger the
current bigger the motors force.

I – The direction of the current; from the battery’s positive pole to
the negative.

B – The direction of magnetic field created by permanent magnets.

F – The direction of current and the force created by magnetic field.

As shown in the image, current and magnetic field creates force that
turns the motors winding – the rotor – in a specific direction.
However, this force maintains only for a while; until the rotor is
turned by 180 degrees. That is why there are many windings that can
ensure continuous operation of the motor with the help of
contactors (shown in green) which helps them switch while keeping
as big of a force F as possible.

By changing the poles of the circuit the force will change its direction
and the motor will turn in the opposite direction.

Permanent-magnet DC motors scheme of construction and operation.

In the last 20 years there have appeared small but
very powerful motors because of the especially
powerful neodymium magnets. However, when
talking about use in robotics the management of
the motor is important aspect; how can robots
managements mechanisms influence the motor to
change its rotations direction and speed to the one
that’s needed.

6.2.1.Electro-motors
speed change
In this part we will look at one specific way of

managing the speed of permanent-magnet DC
motor which is based on determining the width of
voltage impulse. This technique sometimes is also
used with obtaining analog signals with digital
techniques methods. This technique basically
means turning on and off the power and creating
an impulse with specific length (the time when the
power was on). By changing the proportion of time
when the power is on and when it is off we change
the speed of the motor. By changing this
proportion we modulate the signal (see the image -
"Impulse width modulated signal by using command
analogWrite()"). This is how the technical name of
impulse width modulation was created.

። 69 ።

Learn the basics of robotics “SumoBoy” v 2.0 6. Motors and their management

 Impulse width modulated signal
by using command analogWrite()

 In this image the orange lines show time
intervals that are dependent on the specific
microprocessor. With Arduino they are 50 Hz. The
green line shows time in which power is turned on
or off – the width of the impulse.

By using the program analogWrite() it is
possible to change the speed of the motor or the
brightness of the LED as it was shown in the
previous chapter.

6.2.2.Managing servomotor
Unlike the simple DC motor, servomotor is a

special management chain which allows very easy
control over motors speed or position in which the
motors axle should be situated. The management
of the engine is realised by using three connections
– currents positive (usually red) and negative
connection (brown or black) as well as
management connection (orange or yellow).

The same impulse width technique is used for
the management, but it is used with different cycle
length (see the image - "Impulse width modulated
signal for servomotors management").

5V

0V

20 ms

1,0 ms līdz 2,0 ms

5V

0V

1,0 ms

5V

0V

1,5 ms

5V

0V

2,0 ms

0o

90o

180o

Servomotors, the same as other motors, have
different parameters, the most important being
working time; the time that’s needed to change the
position to specific angle. For best enthusiast level
servomotors it is 0.09 seconds to turn 60 degrees.

Servomotors devision:
• Positional rotation servomotor – most wildly

used type of servomotor. It was described
above and with the help of management
signal it can determine the position of the axel
from its starting position.

• Continuous rotation servomotor – this type of
motor allows setting the speed and direction
of the rotation using the management signal.
If the position is less than 90 degrees it turns
in one direction, but if more than 90 degrees it
turns in the opposite direction. The speed is
determined by the difference in value from 90
degrees; 0 or 180 degrees will turn the motor
at its maximum speed while 91 or 89 degrees
at its minimum speed.

• Linear servomotor – with the help of extra
transfers it allows moving forward or
backward, it doesn’t rotate.

Sadly, Arduino is not as easily manageable as
DC motor. That is why there is a special
servomotor management library.

6.2.3.H bridge
The H bridge has earned its name because of its

resemblance to the capital ‘H’ where in all the
corners it has switches and in the middle – electric
motor.

Impulse width modulated signal
for servomotors management

As you can see the servomotors impulse’s cycle
length is 20 milliseconds but the impulse length is 1
or 2 milliseconds. These signal characteristics are
true for most enthusiast level servomotors, but it
should be checked for each individual module in its
manufacturer’s specifications.

Servomotors management chain expects the
impulse every 20 milliseconds, but the width of the
impulse shows the position the servomotor hat to
reach. For example, 1ms (millisecond) shows to 0
degree position but 2 ms to 180 degree position in
relation to the starting point. When in this position
the servomotor will stay in it; resist any outer
forces from trying to change its position. The
graph of it is shown in the image.

 Impulse width modulated signal for
different positions of servomotor

። 70 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

This bridge is usually used for operating
permanent-magnet DC motor, electro magnets and
other similar elements because it allows operating
significantly bigger currents devices with a small
current.

By switching the switches you can change the
motors direction. You have to keep in mind that the
switches need to be turned on and off in pairs. It is
shown in the image below.

If both of the positive or negative switches are
turned on in the top or the bottom then the engine
stops, it can’t freely rotate so it is slowed down.
The management can be reflected in this table
below.

If all of the switches are turned off then the
engine is in free movement. In robotics it is not
always enough so sometimes the H bridge is
turned on in the opposite direction to slow it down
faster; it quickly turned in reverse.

Remember! Neither of these braking mechanisms is
good for the H bridge or the power source used. That is
why this action is unacceptable without a special reason
because it can damage the switches or the power source.

This far everything is fairly simple the
complicated part is with realising the switches – if
the switches don’t work usually relays or
appropriate power transistors are used. The
biggest drawback for relays is that they can only
turn the engine on or off. If the rotation speed
needs to be regulated using the impulse width
modulation then transistors have to be used.
MOSFET type transistors should be used for
ensuring large amount of power.

Specific circuit depends on multiple factors
including the transistors used.

 Currents flow in H bridge

M

+5V

M

+5V

M

+5V

Nowadays to ensure stabile operation of the
bridge, extra elements are added. Manufactured
bridges have one body, for example, the one that’s
included in the constructor – L293D.

L293D microchip consists of two H bridges and
is meant for managing two motors. Every
microchips leg has its own function that’s why it is
very important not to mix them up, otherwise the
microchip can be damaged. All microchips have
numbered legs. The numeration begins with mark
on the body: chipped surface or side, dot or some
other, and continues counter clockwise. While
creating a scheme it is important to take notice of
these numbers and the numbers shown in the
scheme. If you need to find additional information
about the microchip it can be found in its
datasheet. Remember that the datasheet can be
found by writing the number of the device (written
on the body) and adding the word ‘datasheet’ in
the browser.

Upper left Upper right Lower left Lower right Motor work mode
On Off Off On Turns in one direction
Off On On Off Turns in the other direction
On On Off Off Is slowed
Off Off On On Is slowed

L293D microchip and its
designations in a scheme

 Currents flow in H bridge

። 71 ።

6.1. WORKSHEET. Operating a motor
 using a program

D5Arduino
Micro M

VD1

M1

U1

If the motor will be connected to Arduino without a
transistor it will turn very slowly or not turn at all.

D5Arduino
Micro

M
+5V

VD1M1

U1

R1
VT1

Motor will turn fasted if it will be managed through a transistor.

Materials needed
Material/part Amount

Resistor (10 kΩ) 1
DC motor (3-6 V) 1
Diode PH4148 1
NPN transistor BC517 1
Mounting cord As much as needed

darba izpildes soļi
1. Connect the circuit shown in the image

“Managing motor with program”.
2. Connect the circuit to a source of voltage.

Upload the given program.
3. See that the motor doesn’t turn.
4. Connect the circuit shown in the image

“Managing motor with program and
transistor”.

5. Connect the circuit to a source of voltage.
6. See that the motor turns.

void setup ()
{

pinMode(5,OUTPUT);
 //set up MC leg No 5 as an output
#define motON digitalWrite(5,HIGH)
 //define how to turn on the first diode
#define motOFF digitalWrite(5,LOW)
 //define how to turn off the first diode

}
void loop ()
{

motON;
}

Aim
Learn how to use thermo-resistor and show the

gained information on the monitor.

Scheme to be created

። 72 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Managing motor with program and transistor

Managing motor with program

። 73 ።

6.2. WORKSHEET. Regulating motors speed
 using a program

D5

Arduino
Micro

M

+5V

R1

A0

+5V

R2

R3

2

1

Scheme from the previous exercise is upgraded with
potentiometer which will determine the speed of the motor.

Steps of work
1. Connect the circuit shown in the image.
2. Write the given program.
3. Connect the circuit to a source of voltage.
4. Upload the given program.
5. Turn the potentiometers lever.
6. See if the motors speed changes after turning

the lever.
7. Open series port monitor Tools → Series port

monitor.
8. See how the speed of the motor changes

depending on the angle in which the lever is
turned.

9. Turn the lever so the port monitor would
show around 200.

10. Measure voltage between the points 1 and 2.
11. Turn the lever so the port monitor would

show around 50.
12. Measure voltage between the points 1 and 2.
13. Calculate what voltage corresponds to what

values on the series port monitor.

int motPin = 5; //motor management output
int potPin = A0;
 //potentiometers readings input
void setup ()
{

pinMode(motPin,OUTPUT);
//set up motor management leg as an
//output
/*analog input reads values from 0 to
1023, but motors management happens in
the range of 0 to 255, that is why the
read value is divided by 4*/

#define potReading analogRead(potPin)/4
 //definition of potentiometers reading
 //comand
#define motDrive analogWrite(motPin,
potReading);
 //definition of managing the motor

Serial.begin(9600);
//turn on communication with the computer

}
void loop ()
{

motDrive;
//turn on the motor according to the
//potentiometers readings
Serial.println(potReading);

 //information about the speed of the motor
}

Materials needed
Material/part Amount

Resistor R1 (10kΩ) 1
Resistor R2 (1 kΩ) 1
Potentiometer R3 (50 kΩ) 1
DC motor (3-6 V) 1
Diode IN5819 1
NPN transistor BC517 1
Mounting cord As much as needed

Aim
Learn how to use PWM to regulate the speed of

the motor.

Scheme to be created

። 74 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Regulating motors speed with a program

። 75 ።

6.3. WORKSHEET. Servomotors management

Aim
Learn how to use servomotors and its

management with program.

Materials needed
Material/part Amount

Resistor R1 (1 kΩ) 1
Potentiometer R2 (50 kΩ) 1
DC servomotor (5 V) 1
Mounting cord As much as needed

Scheme to be created

D6

Arduino
Micro

+5V

A0

+5V

R1
R2

GND
+5V
Signal

Scheme for connecting servomotor. It is important to correctly
connect the servomotors cords.
Voltage can’t be greater than 5 V.

darba izpildes soļi
1. Connect the circuit shown in the image.

Write the given program.
2. Connect the circuit to a source of voltage.
3. Upload the given program.
4. Turn the potentiometers lever.
5. See if by turning the lever the servomotors

turning angle changes.
6. Open series port monitor Tools → Series

port monitor.
7. See how the motors angle change in

correspondence to turning the lever.

#include <Servo.h>
//add the library to servomotors management
int servoPin = 6;
 //servomotors management output
int potPin = A0;
 //potentiometers input
int servoAngle;
 //servomotors turning angle
Servo servoMotor;
 //create new servomotors object
void setup ()
{

servoMotor.attach(servoPin);
 //add servo pin to servo object
#define potReading analogRead(potPin)

 //definition of potentiometer
 //reading comand
Serial.begin(9600);
//turn on communication with the computer

}
void loop ()
{

servoAngle = map(potReading,0,1023,0,179);
//changes potentiometers read
//values into degrees

servoMotor.write(servoAngle);
//sets up turning angle on servo

Serial.println(servoAngle);
 //information about servomotors angle
delay(15);

//delay so servo could return to its
//starting position

}

። 76 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Servomotors management

። 77 ።

6.4. WORKSHEET. Using H bridge

1. Connect the circuit shown in the image.
2. Write the given program.
3. Upload the given program.
4. Turn the potentiometers lever until the

motor starts to turn.
5. Shift the motors direction switch.
6. See the motor direction changing.
7. Connect the circuit to a source of voltage.

Materials needed
Material/part Amount

H bridge microchip L293D 1
Resistor R1 (10 kΩ) 1
Resistor R2 (1 kΩ) 1
Potentiometer R3 (50 kΩ) 1
Switch ON-ON 1
DC motor (3-6 V) 1
Mounting cord As much as needed

Scheme to be created

+5V

+5V

R3

L2
93

D

EN

GND

GND

GND

GND

1A 1A

1A 1A

1Y 1Y

1Y 1Y

EN

+5V

VCC

D7

Arduino
Micro

A0

A1

D8

D5

+5V

M

R1
R2

+5
V

1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16

1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16

Connecting H bridge microchip for managing single motor.

int dirPin1 =7; //direction pin 1
int dirPin2 =8; //direction pin 2
int speedPin = 5; //motors speed output
int potPin = A0;
 //potentiometer reading input
int switchPin = A1;

//direction switch reading pin

void setup ()
{

pinMode(dirPin1,OUTPUT);
 //set un direction pin No 1 as output
pinMode(dirPin2,OUTPUT);
 // set un direction pin No 2 as output
pinMode(speedPin,OUTPUT);

//set up speed pin as an output
/*analog input reads values from 0
to 1023, but motors management
happens in the range of 0 to 255,
that is why the read value is
divided by 4*/

#define potReading analogRead(potPin)/4
 //definition for potentiometers reading
 //command
#define switchReading digitalRead(switchPin)
//definition for switches reading command

digitalWrite(switchPin,HIGH);
//set up inner pull-up resistor for the
//switches

}
void MotorDrive (int motSpeed,

int motDirection)

{

{

}

 //function for managing the motor

analogWrite(speedPin,motSpeed);
 //setting the speed of the motor
if (motDirection)
 //setting the direction of the motor

digitalWrite(dirPin1,HIGH);
digitalWrite(dirPin2,LOW);

else

{
digitalWrite(dirPin1,LOW);
digitalWrite(dirPin2,HIGH);

}
}
void loop ()
{

MotorDrive(potReading,switchReading);
//calls motors management function

}

Aim
Learn how to use H bridge microchip.

Steps of work

። 78 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Using the H bridge microchip

። 79 ።

7. MINI-SUMO ROBOT

7.1. Aim
The aim of this chapter is to provide an inside

into the operations and programming peculiarities
of the robot which has been included in the
constructor while moving towards development
on complete mini-sumo robot and creation of
qualitative software. That is why we will look at
robots construction and the meaning of its base
elements. We will create an example or test
program for testing the operation of robots nodes
which will serve as a base for further more
complicated programs.

7.2. Theory
Most robots are made up of three main parts

which can ensure high performance and reaching
the set goals if they work in agreement with each
other. These parts are:

• Mechanics – all of the physical in the robot;
everything we can take in our hands – body,
printed circuit board, motor, wheels, battery
and others. While creating mechanical part
you have to follow the rules of mini-sumo
competitions so you could participate in
international competitions in Latvia or other
countries. According to the mini-sumo
competition rules a robot can’t be bigger than
10x10cm or heavier than 500 g. Its
components can’t damage the surface of the
field, come off, or influence opponents
operations. If the rules are followed you can
make whatever construction you want.
However, you should keep in mind that there
are robots meant for other uses; making their
mechanical components requires a lot of time
and attention because only complete
cooperation of all these parts ensure
successfully working robot.

• Electronics – part that connects the robot in a
single system. It brings data from sensors to
program and according to programs
commands moves robots mechanics.

It directly influences how the robot should be
programmed and what will it be able to do.
This constructor’s robots electronics is shown
in scheme.

• Software – part that allows realising self-
imagined operation of the robot. That is why
in competitions often wins the smartest not
the strongest robot. It processes sensor
information and gives commends to robots
output devices as well as motors and LED.
Robot will do only what is written in its
program. That is why if the robot doesn’t do
its task most likely the mistake will be in its
program. The entire robots program is stored
in microcontroller’s memory which is located
on Arduino plate.

If all of the parts work in agreement and
correctly the robot moves and does its tasks as
planned. Making a correct and effective program is
not simple because you have to take in count both
mechanic and electronic peculiarities. In this
chapter you can see the basics of this type of
program that will allow you to create your own
program; one so you could win.

Mini-sumo robot

። 80 ።

Aim
Learn the managements of “SumoBoy”

mini-sumo’s LED.

Devices used in robot
Number in

the diagram
Name in

the program Arduino pin

3 led1 12
7 led2 6
12 led3 13
14 led4 17

Steps of work
1. Make a blinking diodes program for

led3 diode.

void setup() { //setting up
pinMode(13,OUTPUT);

 //defines leg No13 as output
#define led3ON digitalWrite(13,HIGH)
 //definition for turning on led3

#define led3OFF digitalWrite(13,LOW)
//definition for turning off led3

}
void loop() { //neverending cycle

led3ON; //turns on led3
delay(1000); //waits for 1000 milliseconds
led3OFF; //turns off led3
delay(1000); //waits for 1000 milliseconds

}

2. Connect the robot to the computers USB
port.

3. Upload the program to the robot.
4. See how the led3 diode is blinking.
5. Change the delay time so the diode blinks

faster.
6. Save the program, from now on we will

upgrade and change the existing code.
7. Create a program where all the diodes of

the robot turn on and off one by one by
adding to the previous program. The
additions are accented. Upload the program
to the robot.

8. See how the diodes turn on and off one by
one.

7.1. WORKSHEET. Robots LEDs

void setup() { //setting up
//LED definitions

 pinMode(12,OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH)
#define led1OFF digitalWrite(12,LOW)
 pinMode(6,OUTPUT); //Right LED
#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
 pinMode(11,OUTPUT); //Back LED
#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
 pinMode(2,OUTPUT); //Orange LED
#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
}
void loop() { //neverending cycle
 led1ON; //turns on led1
 delay(1000); //waits for 1000 ms
 led1OFF; //turns off led1
 led2ON;
 delay(1000);
 led2OFF;
 led3ON;
 delay(1000);
 led3OFF;
 led4ON;
 delay(1000);
 led4OFF;
}

Robots LEDs

። 81 ።

7.2. WORKSHEET. Robots buttons

Aim
 Learn mini-sumo robots button operations

and use of series port monitor.

Devices used in robot
Arduino MC leg

10 Button1 A2

Steps of work
1. Add to the program so the BUTTON1

turns on and off the blinking of the LED as
well as output information about the
position of the button to the computer.

2. Connect the robot to the computers USB
port.

3. Upload the program to the robot.
4. Push the button and check if the blinking

of the LED can be turned on and off.
5. Turn on series circuits monitor and check

if there is a notification about the buttons
being pushed.

6. Save the program.

Minisumo robots

void setup() { //setting up
//LED definitions

 pinMode(12,OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH)
#define led1OFF digitalWrite(12,LOW)
 pinMode(6,OUTPUT); //Right LED
#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
 pinMode(13,OUTPUT); //Back LED
#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
 pinMode(17,OUTPUT); //Orange
LED#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
 //button definitions
 pinMode(A2,INPUT);
 digitalWrite(A2,HIGH);
#define button1 !digitalRead(A2)
 //turning on series port monitor
 Serial.begin(9600);
}
void loop() { //neverending cycle
 led1OFF;
 led2OFF;
 led3OFF;
 //turns off al diodes in the beginning of
 the program
 if (button1) //turns on blinking diodes

 //if button1 is pushed {
 while (button1){
 //cycle while button is pushed
 Serial.println(“Poga 1 ir nospiesta”);
 //outputs when button1 is pushed
 }

 while(!button1)
 //blinking diodes

 //until button isn’t pushed again
 {
 led1ON;
 led2ON;
 led3ON; //turns on 3 diodes
 delay(1000); //waits for 1000 ms
 led1OFF;
 led2OFF;
 led3OFF; //turns off 3 diodes
 delay(1000); //waits for 1000 ms
 }
 while (button1){

 //cycle while button1 is pushed
 Serial.println(“Poga 1 ir nospiesta”);

 //outputs when button1 is pushed
 }
 }
}

Number in
the diagram

Name in
the program

። 82 ።

7.3. WORKSHEET. Robots DIP switches

Aim
Learn the use of robot DIP switches which

allow turning on different robots strategies of
action.

Devices used in robot

21 DIP1 7
21 DIP2 15
21 DIP3 16
21 DIP4 14

Robots DIP switches

Steps of work
1. Add to the program so the blinking speed

would change according to the combinations
of the DIP switches.

2. Connect the robot to the computers USB
port.

3. Upload the program to the robot.
4. Push the button and check if with them the

LEDs blinking can be turned on and off.
5. Try out some of the DIP switch combinations

and check the change in the blinking speed.
6. Save the program, from now on we will add

to the existing code.

DIP1 DIP2 DIP3 DIP4 Speeds multiplier
o FF o FF o FF o FF × 0
o FF o FF o FF on × 1
o FF o FF on o FF × 2
o FF o FF on on × 3
o FF on o FF o FF × 4
o FF on o FF on × 5
o FF on on o FF × 6
o FF on on on × 7
on o FF o FF o FF × 8
on o FF o FF on × 9
on o FF on o FF × 10
on o FF on on × 11
on on o FF o FF × 12
on on o FF on × 13
on on on o FF × 14
on on on on × 15

Number in
the diagram

Name in
the program

Arduino
pin

። 83 ።

Learn the basics of robotics “SumoBoy” v 2.0 7. Minis-sumo robot

void setup() { //setting up
//LED definitions

 pinMode(12,OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH)
#define led1OFF digitalWrite(12,LOW)
pinMode(6,OUTPUT); //Right LED

#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
pinMode(13,OUTPUT); //Back LED

#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
pinMode(17,OUTPUT); //Orange LED

#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
 //button definitions
pinMode(A2,INPUT);

 digitalWrite(A2,HIGH);
#define button1 !digitalRead(A2)
 //turning on series port monitor
 Serial.begin(9600);
 //DIP switch definition
 pinMode(7,INPUT);
 digitalWrite(7,HIGH);
#define DIP1 digitalRead(7)
 pinMode(15,INPUT);
 digitalWrite(15,HIGH);
#define DIP2 digitalRead(15)
 pinMode(16,INPUT);
 digitalWrite(16,HIGH);
�������digitalRead(16)
 pinMode(14,INPUT);
 digitalWrite(14,HIGH);
#define DIP4 digitalRead(14)
}
int switchCounter =0;
//creates variable
 //for counting pressed switches
int blinkingSpeed =0;
 //creates variable for blinking speed

void loop() { //neverending cycle
digitalWrite(14,HIGH);
 //shows high level
 //so switch 4 could be read

 led1OFF;
 led2OFF;
 led3OFF; //turns off all diodes in

 //the beginning of the program

 if (button1)
 //turns on blinking diodes
 //if button1 is pushed

 {
 while (button1){

 //cycle while the button is pushed
Serial.println(“Button 1 is pushed”);

 //outputs that button1 is pushed
 }
 while(!button1)

 {

 //blinking diodes until
 //button1 isn’t pushed

 switchCounter = 0;
//changes switch calculation to 0

 if(DIP1){
switchCounter =switchCounter+8;

 } //if switch 1 is on adds 8
 if(DIP2){

switchCounter =switchCounter+4;
 }
 if(DIP3){

switchCounter =switchCounter+2;
 }
 if(DIP4){

switchCounter =switchCounter+1;
 }
 blinkingSpeed =(switchCounter*100)+100;
 //calculates blinking speed

 led1ON;
 led2ON;
 led3ON; //turns on 3 diodes
 delay(blinkingSpeed);
 //waits as long as the blinking speed
 led1OFF;
 led2OFF;
 led3OFF; //turns off 3 diodes
delay(blinkingSpeed);

//waits as long as the blinking speed
 }
 while (button1){
 //cycle while button1 is pushed
 Serial.println(“Button 1 is pushed”);

//outputs that button1 is pushed
 }
 }
}

። 84 ።

7.4. WORKSHEET. Robots line sensors

17 senRight A3
18 senLeft A4
19 senBack A5

Steps of work
1. Add to the program so one of the diodes

would turn on when the line sensor is on a
white surface.

2. Connect the robot to the computers USB port.
3. Upload the program to the robot.
4. Put the robot on a white surface and check if

all of the diodes turn on.
5. If any of the diodes doesn’t turn on you have

to change the threshold value.
6. Put every sensor on a dark surface and check

if the diode turns off.
7. Save the program.

Diode Line sensor
led1 senLeft
led2 senRight
led3 senBack

Robots line sensors

Aim
Learn the use of mini-sumo’s line sensors.

Devices used in robot
Arduino MC legNumber in

the diagram
Name in

the program

። 85 ።

Learn the basics of robotics “SumoBoy” v 2.0 7. Minis-sumo robot

void setup() { //setting up
 //LED definitons

 pinMode(12,OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH)
#define led1OFF digitalWrite(12,LOW)
pinMode(6,OUTPUT); //Right LED

#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
pinMode(13,OUTPUT); //Back LED

#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
pinMode(17,OUTPUT); //Orange LED

#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
 //button definitions
 pinMode(A2,INPUT);
 digitalWrite(A2,HIGH);
#define button1 !digitalRead(A2)
 //turnig on series port monitor
 Serial.begin(9600);
 //DIP switch definitions
 pinMode(7,INPUT);
 digitalWrite(7,HIGH);
#define DIP1 digitalRead(7)
 pinMode(15,INPUT);
 digitalWrite(15,HIGH);
#define DIP2 digitalRead(15)
 pinMode(16,INPUT);
 digitalWrite(16,HIGH);
�������digitalRead(16)
 pinMode(14,INPUT);
digitalWrite(14,HIGH);
#define DIP4 digitalRead(14)
 //line sensor definitions
 pinMode(A4,INPUT);
#define senLeft analogRead(A4)<37
 pinMode(A3,INPUT);
#define senRight analogRead(A3)<37

 pinMode(A5,INPUT);
#define senBack analogRead(A5)<37
}
void loop() { //neverending cycle
 led1OFF;
 led2OFF;
 led3OFF;
 //Turns off diodes in program beginning
 if (button1)
 //turns on blinking diodes if
 //button1 is pushed
 {
 while (button1){

// cycle while the button is pushed
 Serial.println(“Button 1 is pushed”);
// outputs when button1 is pushed

 }
 while(!button1)

 {

 //blinking diodes until
 //button1 isn’t pushed

 if (senLeft){led1ON;}
 //if left sensor sees white
 //diode turns on
 else {led1OFF;} //otherwise the

 //diode turns off
 if (senRight){led2ON;}
 else {led2OFF;}
 if (senBack){led3ON;}
 else {led3OFF;}

 }
 while (button1){
 //cycle while the button is pushed
 Serial.println(“Button 1 is pushed”);

 //outputs when button1 is pushed
 }
 }

። 86 ።

Aim
Learn the use of mini-sumo’s SHARP distance

sensors.

Devices used in robot

2 SHARP1 A0
5 SHARP2 A1
6 SHARP3 4

7.5. WORKSHEET. Robots distance sensors

Steps of work
1. Add to the program so when the SHARP

sensors turn on a notification shows up on
the monitor.

2. Connect the robot to the computers USB
port.

3. See if the diodes turn on when an object is
put close to the SHARP sensor even
without the program running.

4. Upload the program to the robot.
5. Turn on the series circuit monitor.
6. Check if the appropriate notification

shows up after putting your hand to the
specific sensor.

7. Save the program.

Number in
the diagram

Name in
the program

Arduino
pin

Robot distance sensors

። 87 ።

Apgūsti robotikas pamatus “SumoBoy” v 2.0 7. Minis-sumo robot

void setup() { //setting up
//LED definitions

 pinMode(12,OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH)
#define led1OFF digitalWrite(12,LOW)
pinMode(6,OUTPUT); //Right LED

#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
 pinMode(13,OUTPUT); //Back LED
#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
 pinMode(17,OUTPUT); //Orange LED
#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
//button definitions
pinMode(A2,INPUT);

 digitalWrite(A2,HIGH);
#define button1 !digitalRead(A2)
 //turning on series port monitor
 Serial.begin(9600);
 //DIP switch definitions
 pinMode(7,INPUT);
 digitalWrite(7,HIGH);
#define DIP1 digitalRead(7)
 pinMode(15,INPUT);
digitalWrite(15,HIGH);
#define DIP2 digitalRead(15)
 pinMode(16,INPUT);
 digitalWrite(16,HIGH);
#define DIP3 digitalRead(16)
 pinMode(14,INPUT);
digitalWrite(14,HIGH);
#define DIP4 digitalRead(14)
 //line sensors definitions
 pinMode(A4,INPUT);
#define senLeft analogRead(A4)<37
 pinMode(A3,INPUT);
#define senRight analogRead(A3)<37
 pinMode(A5,INPUT);
#define senBack analogRead(A5)<37

 led1OFF;
 led2OFF;
 led3OFF;
 //Turns off diodes in program beginning
 if (button1)
 //turns on blinking diodes
 //if button1 is pushed
 {
 while (button1){

 //cycle until button1 is pushed
 Serial.println(“Button 1 is pushed”);

 //outputs when button 1 is pushed
 }
 while(!button1)

 //blinking diodes while
 //button1 isn’t pushed
{ //if there is an obstacle

 //a notification is shown
if (SHARP1){Serial.println(“Obstacle is

in front at right side”);}
if (SHARP2){Serial.println(“Obstacle is

in front at middle”);}
if (SHARP3){Serial.println(“Obstacle is

in front at left side”);}
 delay(500);

//delays the program for half a second
//so you would be able to read the text

 }
 while (button1){
 //cycle until button1 is pushed
 Serial.println(“Button 1 is pushed”);

 //outputs when button 1 is pushed
 }
 }
}

#define SHARP1 !digitalRead(A0)
 pinMode(A1,INPUT); //SHARP2 middle
#define SHARP2 !digitalRead(A1)
 pinMode(4,INPUT); //SHARP3 right middle
#define SHARP3 !digitalRead(4)
}
void loop() { //neverending cycle

 //SHARP sensors definitions
 pinMode(A0,INPUT); //SHARP1 left middle

። 88 ።

7.6. WORKSHEET. Robots motors

15

15 Right motors direction
management pin

20
Left motors speed
management pin 5

20 Left motors direction
management pin 11

Steps of work
1. Add to the program so turning on a specific

switch robot would go in specific direction.
2. Connect the robot to the computers USB

port.
3. Upload the program to the robot.
4. Turn on only one of the switches.
5. Push button No1.
6. See if the motors are turning.
7. Check all the driving directions of the robot.
8. Check if robot will do the action of the last

button when many of them are pushed.
9. Save the program.

Motors
operations

Turning
direction of

the left motor

Turning
direction of

 the right motor
Forward
Backward
Left
Right

Robots motors

Aim
Learn the use of mini-sumo motors.

Devices used in robot
Number in

the diagram Name Arduino
pin

9

10

Right motors speed
management pin

። 89 ።

Learn the basics of robotics “SumoBoy” v 2.0 7. Minis-sumo robot

void setup() { //setting up
//LED definitions

pinMode(12,OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH)
#define led1OFF digitalWrite(12,LOW)
pinMode(6,OUTPUT); //Right LED

#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
pinMode(13,OUTPUT); //Back LED

#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
pinMode(17,OUTPUT); //Orange LED

#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
//button definitions
pinMode(A2,INPUT);

 digitalWrite(A2,HIGH);
#define button1 !digitalRead(A2)
 //turning on series port monitor
 Serial.begin(9600);
 //DIP switch definitions
 pinMode(7,INPUT);
 digitalWrite(7,HIGH);
#define DIP1 digitalRead(7)
 pinMode(15,INPUT);
 digitalWrite(15,HIGH);
#define DIP2 digitalRead(15)
 pinMode(16,INPUT);
 digitalWrite(16,HIGH);
�������digitalRead(16)
 pinMode(14,INPUT);
 digitalWrite(14,HIGH);
#define DIP4 digitalRead(14)
 //line sensors definitions
 pinMode(A4,INPUT);
#define senLeft analogRead(A4)<37
 pinMode(A3,INPUT);
#define senRight analogRead(A3)<37
 pinMode(A5,INPUT);
#define senBack analogRead(A5)<37
 //SHARP sensors definitions
 pinMode(A0,INPUT);//SHARP1 left middle
#define SHARP1 !digitalRead(A0)
 pinMode(A1,INPUT);//SHARP2 middle
#define SHARP2 !digitalRead(A1)
 pinMode(4,INPUT);//SHARP3 right middle
#define SHARP3 !digitalRead(4)
 //motors definition
 pinMode(5, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
}

//motors managements function definitions
//function for driving forward
void Forward (int leftSpeed, int rightSpeed)
{
 analogWrite(5, leftSpeed); //left speed
 digitalWrite(11, LOW);
 //left sides direction
 analogWrite(9, rightSpeed);//right speed
 digitalWrite(10, LOW);
 //right sides direction
}
void Backward (int leftSpeed, int rightSpeed)
{
 analogWrite(11, leftSpeed);
 digitalWrite(5, LOW);
 analogWrite(10, rightSpeed);
 digitalWrite(9, LOW);
}
void Left (int leftSpeed, int rightSpeed)
{
 analogWrite(11, leftSpeed);
 digitalWrite(5, LOW);
 analogWrite(9, rightSpeed);
 digitalWrite(10, LOW);
}
void Right (int leftSpeed, int rightSpeed)
{
 analogWrite(5, leftSpeed);
 digitalWrite(11, LOW);
 analogWrite(10, rightSpeed);
 digitalWrite(9, LOW);
}
int senState = 0; //variable for robots
operations
void loop() { //neverending cycle
 //turns off all the diodes in
 //the beginning of the program
 led1OFF;
 led2OFF;
 led3OFF;
 Forward(0,0); //stops motors
 //turning on appropriate DIP switch
 //motors change turning direction
 while(DIP1) {

Forward(100, 100);
}

 while(DIP2) {
Backward(100, 100);
}

 while(DIP3) {
Left(100, 100);
}

 while(DIP4) {
Right(100, 100);
}

}

7.7. WORKSHEET. Robots screen

Steps of work
1. Add libraries to the program to ensure

that the screen works.

Robots screen

Aim
 Learn the use of robots OLED screen.

Devices used in robot
Number in

the diagram
Name in

the program Arduino pin

23 OLED SDA 2
24 OLED SCL 3

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

2. Write the screens definition to the other
definitions meanwhile also setting up the
colour and size of the output letters.

void setup() { //setting up
 //setting up the screen
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C,
false);
 display.setTextSize(1); //text size
 display.setTextColor(WHITE); //text colour

//- white

3. Add to the program so when the line
sensors turn on the screen shown
values read by the sensors.

void loop() { //neverending cycle
 // output sensor values to the screen
 display.setCursor(0, 0);
 display.clearDisplay();
 display.print("SenLeft: ");
 display.println(analogRead(A4));
 display.print("SenRight: ");
 display.println(analogRead(A3));
 display.print("SenBack: ");
 display.println(analogRead(A5));
 display.display();
 delay(100);
 display.clearDisplay();

4. Connect the robot to the computers USB
port.

5. Upload the program to the robot.
6. See if the values read by the line sensors

show up on the screen.
7. Save the program.

። 90 ።

። 91 ።

8. MINI-SUMO COMPETITION

8.1. Aim
In this chapter we will briefly look at the rules

for mini-sumo competitions. We will create a
simple fighting program based on these rules with
which you will be able to compete in both regional
and international mini-sumo competitions.

8.2. 8.2.Rules for
mini-sumo competitions
Mini-sumo is a robot competition discipline

which is based or the Japanese sumo battles.
Normally during a robot sumo battle two robots
compete in a round ring. Robots independently
battle in the ring until one gets pushed out of it.
The winner is the robot still in the ring.

Mini-sumo battle ring is a black circle with the
diameter of 72 cm and 2.5 cm wide white line
around it. In the centre of the ring there are two
parallel dark brown stripes.

Parameters for mini-sumo robots – they
determine conditions that have to be met for the
robot to be allowed to compete. If any of the
parameters aren’t met then the robot isn’t allowed
to compete. These parameters are:

• Weight up to 500g.
• Size 10 cm x10 cm.
• Wight is unlimited.
• Robot has to be independent (while the robot

operates human is forbidden to intervene in
any way).

• Robot activates 5 seconds after pushing the
turn-on button or receiving a remote signal.

• Robot isn’t allowed to damage the ring.
• Robot isn’t allowed to affect the operations of

its opponent.
• No parts are allowed to separate from the

robot.
Mini-sumo competitions process –

competitions in different countries are very similar
with some minor differences. The process of the
competition can be overall explained with these
actions:

• Two competitors head to a ring with their
robots after a judge has called them
(spectators have to be further away from the
ring so they wouldn’t disturb the robots and
would be safe).

• After the judges signal both competitors put
their robots in the ring on their side of their
line.

• After the start signal both competitors push
the START button and steps away from the
ring.

• After 5 seconds of the judges remotes signal
robots start the battle.

• The firs robot that is pushed out of the ring
and touches the surface outside the ring loses.

• If the robot doesn’t move or the battle gets too
long the judge can stop the battle and
determine the winner.

• These battles happen three times to determine
the best robot.

Every competition has different rules so it is
important to read the regulations and abide by
them.

Mini-sumo ring

። 92 ።

8.1. WORKSHEET. Mini-sumo settings

Aim
Get ready for developing mini-sumo’s

management program.
 In the following chapters the code will be

changed only in the main cycle (function loop())
and different variables will be added.

Steps of work
1. Write or use void setup() functions section

motors functions from the previous chapter.
2. Copy the programs code and check its

correctness.

 analogWrite(5,leftSpeed);
 digitalWrite(11,LOW);
 analogWrite(9,rightSpeed);
 digitalWrite(10,LOW);
}
void Backward (int leftSpeed, int rightSpeed){
 analogWrite(11,leftSpeed);
 digitalWrite(5,LOW);
 analogWrite(10,rightSpeed);
 digitalWrite(9,LOW);
}
void Left (int leftSpeed, int rightSpeed){
 analogWrite(11,leftSpeed);
 digitalWrite(5,LOW);
 analogWrite(9,rightSpeed);
 digitalWrite(10,LOW);
}
void Right (int leftSpeed, int rightSpeed){
 analogWrite(5,leftSpeed);
 digitalWrite(11,LOW);
 analogWrite(10,rightSpeed);
 digitalWrite(9,LOW);
}

void loop() { //Mūžīgais cikls
}

void Forward (int leftSpeed, int rightSpeed){

//to use the screen you have
//to use Adafruit libraries:
//https://learn.adafruit.com/monochrome-
oled-breakouts/arduino-library-and-examples
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);
void setup() {//setting up
 //setting up the screen
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C,
false);
 display.setTextSize(1);
 display.setTextColor(WHITE);
 //LED definitions
 pinMode(12, OUTPUT); //Left LED
#define led1ON digitalWrite(12,HIGH);
#define led1OFF digitalWrite(12,LOW);
 pinMode(6, OUTPUT); //Right LED
#define led2ON digitalWrite(6,HIGH);
#define led2OFF digitalWrite(6,LOW);
 pinMode(13, OUTPUT); //Back LED
#define led3ON digitalWrite(13,HIGH);
#define led3OFF digitalWrite(13,LOW);
 pinMode(17, OUTPUT); //Orange_LED
#define led4ON digitalWrite(17,HIGH);
#define led4OFF digitalWrite(17,LOW);
 //buttons definitions
 pinMode(A2, INPUT);
 digitalWrite(A2, HIGH);
#define button1 !digitalRead(A2)
 //turning on series port monitor
 Serial.begin(9600);
 //DIP switch definitions
 pinMode(7, INPUT);
 digitalWrite(7, HIGH);
#define DIP1 !digitalRead(7)

 pinMode(15, INPUT);
 digitalWrite(15, HIGH);
#define DIP2 !digitalRead(15)
 pinMode(16, INPUT);
 digitalWrite(16, HIGH);
#define DIP3 !digitalRead(16)
 pinMode(14, INPUT);
 digitalWrite(14, HIGH);
#define DIP4 !digitalRead(14)
 //Līnijas sensoru definīcijas
 pinMode(A4, INPUT);
#define senLeft analogRead(A4)<35
 pinMode(A3, INPUT);
#define senRight analogRead(A3)<35
 pinMode(A5, INPUT);
#define senBack analogRead(A5)<35
 //SHARP sensors definitions
 pinMode(A0, INPUT); //SHARP1 left middle
#define SHARP1 !digitalRead(A0)
 pinMode(A1, INPUT); //SHARP2 middle
#define SHARP2 !digitalRead(A1)
 pinMode(4, INPUT); //SHARP3 right middle
#define SHARP3 !digitalRead(4)
 //Motoru definīcijas
 pinMode(5, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
}
//motors management function definitions

። 93 ።

8.2. WORKSHEET. Robot that avoids obstacles

Aim
Create a managing program which allows the

robot to avoid obstacles in front of it.

Steps of work
1. Create robots operation plan.

After noticing an obstacle with front sensor
SHARP3 the robot must drive backwards
and turn.

2. Create management program.
3. Connect the robot to the computers USB port.
4. Upload the program to the robot.
5. Put a robot on a clear surface so it would fall.
6. Turn on the robot with the button.
7. Check if the robot drives backward and turns

left after spotting an obstacle.
8. You have to remember to be cautious with

delay(200) because while delayed the robot
doesn’t respond to sensors signals and
blindly does the last action.

Robots action plan after spotting an obstacle

//programs settings from first worksheet

int motState =0; //variable in which we will
//show motors operations

void loop() { //neverending cycle
 Forward(0,0);
 //call function for stoping the motors
 if (button1)

 {
//robot starts working after button1 is
 //pushed

 while (button1){ //cycle while the
//button is pushed }

 while (!button1)

 {
//robot stops after button1 is pushed

 if (SHARP3) {
motState=1;

 } // if previous sensor activates
 //variable is put as 1

 else {
motState=0;

 } //if previous sensor doesn’t
 //activate variable is put as 0
 switch (motState){
 //Switch structure reads variable
 case 0: //if variable is 0 robot
 //drives forward
 Forward(60,60);
 break;
 case 1: //if the variable is 1
 //robot drives backward and turns

Backward(60,60);
delay(200);

 // 200 ms goes backwards
 Left(60,60);
 delay(200); //200 ms - turns
 break;
 }
}
while (button1){ //cycle while the

//button is pushed
}

 }
 }

። 94 ።

8.3. WORKSHEET. Program for not driving
 out of the ring

Aim
Create a management program that doesn’t

allow the robot to drive off the ring.

Steps of work
1. Put the robot on the ring and check in how

many different combinations can the line
sensors work.
Sensors work after spotting the white line.

2. Think of different strategies to avoid these
situations.

3. Create a management program while keeping
in mind the observed movements.

4. Connect the robot to the computers USB port.
5. Upload the program to the robot.
6. Place the robot on the ring.
7. Turn on the robots program.
8. See how the robot works in the ring; topping

at the white boundary and changing its
trajectory.

9. If the robot doesn’t stop at the white
boundary you have to change the delay values
for motors speed and time.

። 95 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

No Image senBack senRight senLeft Action

0. o FF o FF o FF Turn right, turn left, drive forward.

1. o FF o FF Drive backwards, turn right while driving
backwards.

2. o FF on o FF Drive backwards, turn left while driving
backwards.

3. o FF on on Drive backwards.

4. on o FF o FF Drive forward.

5. on o FF on Turn right, drive forward.

6. on on o FF Turn left, drive forward.

7. Impossible on the ring on on on Stop.

on

። 96 ።

Learn the basics of robotics “SumoBoy” v 2.0 8. Mini-sumo competition

// beginning of the program from the
//previously made program
int motState =0;
//variable in which we will show robots
//oprations
void loop() { //neverending cycle

 //outputs sensors values on the screen
display.setCursor(0, 0);
display.clearDisplay();
display.print("SenLeft: ");
display.println(analogRead(A4));
display.print("SenRight: ");
display.println(analogRead(A3));
display.print("SenBack: ");
display.println(analogRead(A5));
display.display();
delay(100);
display.clearDisplay();
 //motors change their turningdirection
//after turning the appropriate switch
while (DIP1) {

 Forward(45,45);
 }
 while (DIP2) {

Backward(45,45);
 }
 while (DIP3) {

Left(45,45);
 }
 while (DIP4) {

Right(45,45);
 }
if (senLeft) {

 led1ON; //add sensor binary value to
 } else { //motors position

led1OFF;
 }

if (senRight) {
 led2ON;
} else {

led2OFF;
 }

 if (senBack){
 led3ON;

} else {
led3OFF;

 }
 Forward(0, 0); //calls function for

 //stoping the motors
//outputs sensors values to series monitor
Serial.print("SenLeft: ");
Serial.println(analogRead(A4));
Serial.print("SenRight: ");
Serial.println(analogRead(A3));
Serial.print("SenBack: ");
Serial.println(analogRead(A5));
Serial.print("S1: ");
Serial.println(digitalRead(A0));
Serial.print("S2: ");
Serial.println(digitalRead(A1));
Serial.print("S3: ");
Serial.println(digitalRead(4));

 if (button1) //robot starts working

 {
//after pushing Button1

while (button1) {
//cycle while the button is pushed
}
 led1ON;
 delay(350);
 led2ON;
 delay(350);
 led3ON;
 delay(350);
 led1OFF;
 delay(350);
 led2OFF;
 delay(350);
 led3OFF;
 while (!button1)
 //robot stops after pushing button1
 {

senState = 0;
//makes variable zero
if (senLeft) {

led1ON;
senState = senState + 1;

} else {
led1OFF;

//adds to the motors position
//sensors binary value
}
if (senRight) {

led2ON;
senState = senState + 2;
} else {

led2OFF;
}
if (senBack) {

led3ON;
senState = senState + 4;
} else {

led3OFF;
}
if (senState == 0) {
//looks at the SHARP sensor if
//no line sensor has activated
if (SHARP1) {

senState = +8;
}
if (SHARP2) {

senState += 16;
}
if (SHARP3) {

senState += 32;
}

}
 display.setCursor(0, 0);
 display.clearDisplay();
 display.print("SenLeft: ");
 display.println(senLeft);
 display.print("SenRight: ");
 display.println(senRight);
 display.print("SenBack: ");
 display.println(senBack);

display.print("SenState: ");
display.println(senState); d
isplay.display();
display.clearDisplay();

//"senState" glabā sensoru stāvokļa
//vērtību
switch (senState) {
//Switch struktūra nolasa mainīgo

case 0:
//no sensor has activated

Forward(35,35);
 break;

case 1: //left sensor
Backward(45,45);
delay(250);
Right(45,45);
delay(150);
break;

case 2://right sensor
Backward(45,45);
delay(250);
Left(45,45);
delay(150);
break;

case 3://both front
Backward(45,45);
delay(350);
break;

case 4://back
Forward(45,45);
delay(350);
break;

case 5://back and left
Right (45,45);
delay(350);
Forward(45,45);
delay(250);
break;

case 6://back and right
Left (45,45);
delay(350);
Forward(45,45);
delay(250);
break;

case 7:
//all sensors have activated

Forward(0, 0);
break;

}
 }
 while (button1) {
 //cycle while the button is pushed
 }

 }
}

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

። 97 ።

። 98 ።

8.4. WORKSHEET. Program for sumo battles

Aim
Create robots fighting program using the three

front SHARP sensors.

Steps of work
1. Turn on the robot.
2. Think of ways how the robot should act after

spotting the opponent with its front SHARP
sensors (use the diodes that light up after
sensor is activated).

3. 3hink of strategies that would successfully
push the opponent out of the ring after it’s
been spotted.

4. Create a management program while
keeping in mind the observed movements.

5. Connect the robot to the computers USB port.
6. Upload the program to the robot.
7. Put the robot on the ring.
8. Turn on the robots program.
9. Wait 5 seconds for the robot to start working.

10. Put a cardboard box or another robot in the
ring and let your robot push it out.

11. Add the other SHARP sensors to the
program code and work out your strategy.

12. Tweak with the motors speed values.
13. Participate in the mini-sumo competition!

። 99 ።

Learn the basics of robotics “SumoBoy” v 2.0 8. Mini-sumo competition

No Image SHARP3 SHARP2 SHARP1 Action

8. o FFo FFon Turns left

16. o FF on o FF Goes forward

24. o FFonon Goes forward and slightly left

32. ono FFo FF Turns right

40. on o FF on Goes forward

48. onono FF Goes forward and slightly right

56. on on on Quickly goes forward

። 100 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

// beginning of the program from the //
previously made program
int motState =0;
//variable in which we will show robots //
oprations
void loop() { //neverending cycle

//outputs sensor values to the screen
 display.setCursor(0, 0);
 display.clearDisplay();
 display.print("SenLeft: ");
 display.println(analogRead(A4));
 display.print("SenRight: ");
 display.println(analogRead(A3));
 display.print("SenBack: ");
 display.println(analogRead(A5));
 display.display();
 delay(100);
 display.clearDisplay();
 //motors change direction after turning
 //on appropriate DIP
 while (DIP1) {

Forward(45,45);
 }
 while (DIP2) {

Backward(45,45);
 }
 while (DIP3) {

Left(45,45);
 }
 while (DIP4) {
 Right(45,45);

 }
 if (senLeft) {

led1ON; //adds sensors binary value
 //to motors position
 } else {

led1OFF;
 }
 if (senRight) {

led2ON;
 } else {

led2OFF;
 }
 if (senBack) {

led3ON;
 } else {

led3OFF;
 }

Forward(0, 0); //call function for
 //stopping the motors

//outputs sensors values to series monitor
 Serial.print("SenLeft: ");
 Serial.println(analogRead(A4));
 Serial.print("SenRight: ");
 Serial.println(analogRead(A3));
 Serial.print("SenBack: ");
 Serial.println(analogRead(A5));
 Serial.print("S1: ");
 Serial.println(digitalRead(A0));
 Serial.print("S2: ");

 Serial.println(digitalRead(A1));
 Serial.print("S3: ");
 Serial.println(digitalRead(4));
 if (button1)
 //robot starts working with pushing Button1
 {

while (button1) {
 //cycle while the button is pushed

}
led1ON;
delay(350);
led2ON;
delay(350);
led3ON;
delay(350);
led1OFF;
delay(350);
led2OFF;
delay(350);
led3OFF;

while (!button1)
 //robot stops with pushing button1

{
senState = 0;
//set variable to zero
if (senLeft) {

led1ON;
senState = senState + 1;

} else {
led1OFF;
//adds to motors position
//sensors binary value

}
if (senRight) {

led2ON;
senState = senState + 2;

} else {
led2OFF;

}
if (senBack) {

led3ON;
senState = senState + 4;

} else {
led3OFF;

}
if (senState == 0) {
// looks at SHARP sensor, if no
//line sensor has activated

if (SHARP1) {
senState = +8;

}
if (SHARP2) {

senState += 16;
}
if (SHARP3) {

senState += 32;
}

}

display.setCursor(0, 0);
display.clearDisplay();
display.print("SenLeft: ");
display.println(senLeft);

display.print("SenRight: ");
display.println(senRight);
display.print("SenBack: ");
display.println(senBack);
display.print("SenState: ");
display.println(senState);
display.display();
display.clearDisplay();
//"senState" saves sensors
//pasitions value
switch (senState) {
//Switch structure reads
//variable

case 0:
//no sensor has activeted

Forward(35,35);
delay(150);
Right(45,45);
break;

case 1: //left sensor
Backward(45,45);
delay(250);
Right(45,45);
delay(150);
break;

case 2://right sensor
Backward(45,45);
delay(250);
Left(45,45);
delay(150);
break;

case 3://both front
Backward(45,45);
delay(350);
break;

case 4://back
Forward(45,45);
delay(350);
break;

case 5:
//back and left

Right (45,45);
delay(350);
Forward(45,45);
delay(250);
break;

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

case 6://back and right
Left (45,45);
delay(350);
Forward(45,45);
delay(250);
break;

case 7:
//all sensors have
//activated

Forward(0, 0);
break;

//if robots SHARP sensors
//have activated
case 8://SHARP1

Right(80,80);
break;

case 16://SHARP2
Forward(100,100);
break;

case 24://SHARP1 & SHARP2
Forward(100,80);
break;

case 32://SHARP3
Left(80,80);
break;

case 40://SHARP1 &SHARP3
Forward(100,100);
break;

case 48://SHARP2 &SHARP3
Forward(80,100);
break;

case 56:
//SHARP1 &SHARP2& SHARP3

Forward(150,150);
break;

}
}
while (button1) {
//cycle while the button is pushed
}

 }
}

። 101 ።

። 102 ።

1. Annex
List of parts and

their images

Material/part Image Amount

Resistor (200 Ω) 5

Resistor (330 Ω) 10

Resistor (1 kΩ) 5

Resistor (4.7 kΩ) 5

Resistor (10 kΩ) 5

Resistor (47 kΩ) 5

Photo-resistor
(20 kΩ) 1

Material/part Image Amount

Potentiometer
(50 kΩ) 3

Termistor NTC
(2.2 kΩ) 1

Capacitor (15 pF) 2

Electrolytic
capacitor
(100 µF, 63 V)

2

Electrolytic
capacitor
(2200 µF, 10 V)

2

Transistor NPN
BC517 3

። 103 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Material/part Image Amount

Diode PH4148 5

LED 6

RGB LED 1

Optocoupler
ELITR9909 1

H gridge
microchip
L203D

1

Material/part Image Amount

Mounting cords 2
packs

Button 2

Switch 2

Permanent-
magnet
DC motor
(3-6 V)

1

Srevomotor 1

። 104 ።

2. Annex
Robots input and

output devices

። 105 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

No Name Use Arduino leg
1. POWER SUPPLY Port for connecting charger –
2. CHERGING LED Shows that the robot is charging
3. LED1 Programmable diode for information output
4. SHARP1 Looking for the opponent
5. SHARP2 Looking for the opponent
6. SHARP3 Looking for the opponent
7. LED2 Programmable diode for information output
8. POWERLED Shows that the robot is on and working on battery
9. ON/OFF SWITCH On and off switch for the battery

10. BUTTON1 Programmable button
11. MICRO USB Arduino controllers USB cord for uploading program, power, series

communication
12. RESET Button for reseting the program
13. OLED screen Programmable screen for informations output (SDA 2, SCL 3)

14. IR RECIEVER IR module for starting 0(HIGHT) START and stoping 1(LOW) STOP
the robot with a remote

15. LED4 Programmable diode for information output
16. LED3 Programmable diode for information output
17. TX LED Series port indicator
18. MOTOR2 Controllable 6V direct currents motor. Motors speed 9, direction 10
19. LED SDA I2C SDA indicator
20. SHARPLED Light up if something comes in the SHARP field of vision. SHARP1-

SHARP3
21. SENRIGHT Optocoupler for detecting mini-sumo rings edge
22. SENLRFT Optocoupler for detecting mini-sumo rings edge
23. SENBACK Optocoupler for detecting mini-sumo rings edge
24. LED SCL I2C SCL indicator –

MOTOR1

DIPSWITCH1,2,3,4

EMPTY BATERY

Controllable 6V direct currents motor. Motors speed 5, direction 11
Programmable DIP switch for robots strategies DIP1 (7), DIP2 (15),
DIP3 (16), DIP4 (14)
Diode that singals low battery

25.

26.

27.

–
12
A0
A1
4
6
–
–

A2

–

–
2.3

–

17
13
–

9,10
0

0

A3
A4
A5

5,11

7,15,16,14

–

። 106 ።

GND

GND

GND

LM311D

GND

GND

ATMEGA32U4QFNN44

G
N

D

C
R

Y
S

TA
L

GND

GND

33
0

33
0

33
0

R
E

D

1K

4u7

1K10
0K

10
0K

G
R

E
E

N1K

10
0n

G
N

D

YELLOW

4.7uH

AOZ1280

GND

10u
10u

10
n

10
K

18
K

2
2K

2K

2K

GND
100n 10u

D
IO

D
E

M
IN

IS
M

A

2N7002K
2N7002K Z

3V

10
K

BUTTON

10K

1u

33
0

33
0

10
K

+
5V

22

22

G
N

D

22p 22p

GND

10
0n

bd

1u 100n

+
5V

GND
GND

GND
GND

RESET

4.7uH

AOZ1280

GND

10u
10u

10
n

10
K

49
K

9
9K

53

GND 100nD
IO

D
E

M
IN

IS
M

A

100n

10
K

10
K

GND
GND

100n

10
0n

C
G

06
03

M
LC

-0
5E

C
G

06
03

M
LC

-0
5E

10u
PTCMF-MSMF050 FDN340P

+
5V

V
+

+
5V

V
+

NP

4K
7

4K
7

+
5V

1 3 5

2 4 6
7 9

8 10

J1
0

1 3 5

2 4 6
7 9

8 10

J9

6

3

2

5

7

1
8

4

IC1

S2 3

S1 2

GND 1

1
2
3
4

J6

1
2
3
4

J7

3
2
1

J8

13 RESET

42 AREF

24 AVCC
44 AVCC

4 D+
3 D-

15 GND
23 GND
35 GND

43*2 GND

PB0(SS) 8

PB1(SCK) 9

PB2(MOSI) 10

PB3(MISO) 11

PB4(ADC11) 28

PB5(ADC12) 29

PB6(ADC13) 30

PB7 12

PC6 31

PC7 32

PD0(SCL) 18
PD1(SDA) 19

PD2(RX) 20

PD3(TX) 21

PD4(ADC8) 25

PD5 22

PD6(ADC9) 26

PD7(ADC10) 27

33 PE2/HWB

PE6 1

PF0(ADC0) 41
PF1(ADC1) 40
PF4(ADC4) 39
PF5(ADC5) 38
PF6(ADC6) 37
PF7(ADC7) 36

6 UCAP

5 UGND

2 UVCC

7 VBUS

14 VCC
34 VCC

17 XTAL1

16 XTAL2

IC5

D+
D-

VBUS
GND

D
2

D
3

D
4

3
1

4
2 Q

3

R
1

R
2

R
8

D
5

R
10

C2

R
5

R
4

R
6

D
6

R
3

C
1

D8
L1

VINDC_ADAPTER5

EN4

G
N

D
2

B
S

T
1

LX 6

FB 3

IC2C3
C5

C
6

R
11

R
12

R
13

R
14

R15

C7

1*2 VDD

7 STAT

G
N

D
8*

3

PROG 10

BATT 3*2

C8

D
10

Q4
Q1

Z
3

R
7

5678
1 2 3 4

S
3

SW1

R9

C4

D
1

D
9

R
17

R
18

R
19

R20

R21

1
2
3
4

J11

1
3
5

2
4
6

SV1

C9 C10

C
11

L3

C12 C13

1
2
3

JP2

SW2

S1

L2
VIN5

EN4

G
N

D
2

B
S

T
1

LX 6

FB 3

IC4C14
C15

C
16

R
22

R
23

R
25

C17

D
11

C18

R
24

R
26

C19

C
20

Z
1

Z
2

C21

F1

Q2

R27

R
16

R
28

S
H

_L

SH_L

S
H

_F

SH_F

L_
B

L_B

L_
L

L_L

L_
R

L_RS
H

_R

SH_R

LE
F

T
_P

W
M

1

LEFT_PWM1

+
5V

+
5V

+5V

+5V

+5V

+5V

+5V

LE
F

T
_P

W
M

2

LEFT_PWM2

GND

GND

+5V
GND GND

PWR_SWITCH

V+

V+

DIP1

DIP1

D
IP

1

RST

RST

BATT

BATT

DC_ADAPTER

RIGHT_PWM1

R
IG

H
T

_P
W

M
1

RIGHT_PWM2

R
IG

H
T

_P
W

M
2

TXLED

T
X

LE
D

DIP4/MISO

DIP4/MISO

D
IP

4/
M

IS
O

DIP3/MOSIDIP3/MOSI

D
IP

3/
M

O
S

I

DIP2/SCK

DIP2/SCK

D
IP

2/
S

C
K

RXLED

R
X

LE
D

LE
D

2

LED2

LED2

LED1

LE
D

1

LE
D

3

LED3

BUTTON

BUTTON

V_READ

V_READ

S
H

_F
L/

S
C

L

SH_FL/SCL

SH_FL/SCL

S
H

_F
R

/S
D

A

SH_FR/SDA

SH_FR/SDA

STOP/TX

STOP/TX

START/RX

START/RX

VUSB

VUSB

USB_P

USB_P

USB_N

USB_N

POWER_ENABLE

POWER_ENABLE

USB

1 2 3 4

ON

LiFe Balance

D14/RX LED
D15
D16
D17

D8
D9#/A8
D10#
D11#

D5#

D13#

D3#
D2

D0
D1

D4/A6

TX LED

D12/A10

D6#/A7
D7

A0
A1
A2
A3
A4
A5

Battery Charging

3. Annex
Robots overall

scheme

። 107 ።

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

+
5V

GND

GND

+
5V

+
5V

GND

+
5V

+
5V

GND GND

GND

G
N
D

GND

+5V

+
5V

06
03

1R
1R 1R 1R1R100n

100n

100n100n100n

06
03

06
03

06
03

06
03

+
5V

22u 22u 22u

22u

22u

GND

+
5V

JST-PH-2-V-SMD

GND

+
5V

+
5V

V
+

V
+

GND

JST-PH-2-V-SMD

10
K

100n

100n

100n

GND

GND

GND

GND

100n

100n

100n

GND

GND

V
+

V
+

10
uf

G
N
D

10
uf

G
N
D

10
0n

10
0n

G
N
D

G
N
D

10
0n

10
0n

S
IS
41
3D
N

10
K V+

10
K

10
K

10
K

10
K

GND

GND

PTCMF-LSMF300X-2
2u2

220u 220u

+
5V

GND

220u

GND

V
C
C

1

LE
D
_F
B

2

O
U
T

3

G
N
D

4

R
E
G

5

V
C
C

1

LE
D
_F
B

2

O
U
T

3

G
N
D

4

R
E
G

5

1 3 5

2 4 6
7 9

8 10

J3
1 3 5

2 4 6
7 9

8 10

J4

V
C
C

1*
3

LE
D
_F
B

2*
3

O
U
T

3*
3

G
N
D

4

R
E
G

5

V
C
C

1

LE
D
_F
B

2

O
U
T

3

G
N
D

4

R
E
G

5

V
C
C

1

LE
D
_F
B

2

O
U
T

3*
3

G
N
D

4*
3

R
E
G

5*
3

1
2
3

J5

LE
D
1

R
17

R
20

R
6

R
7

R
8

R
11

C10

C11

C4C5C6

LE
D
2

R
9

LE
D
3

R
21

LE
D
4

R
22

LE
D
5

R
23

C1 C2 C3

C7

C8

SLEEP7
IN25
IN16

G
N
D

4*
2

OUT2 3

OUT1 2

V
M

1

VCC8 P1P1

P2P2

J1

SLEEP7
IN25
IN16

G
N
D

4*
2

OUT2 3

OUT1 2

V
M

1

VCC8 P1P1

P2P2

J2

R
25

C9

C12

C13

C17

C18

C19

C
20

C
21

C
14

C
22

C
23

C
24

F1

Q
1

R
19

R
1

R
2

R
3

R
4

C15

C16 C25

C26

IR_SENSOR1

+5V OUT

GND

IR_SENSOR2

+5V OUT

GND

IR_SENSOR3

+5V OUT

GND

S2

S
2

S
2

S1

S
1

S
1

S
3

S3

S
3

LR

LR

LL

LL

LB

LB

S5

S
5

S
5

S4

S
4

S
4

POWER_ENABLE

POWER_ENABLE

BATT

LEFT_PWM1

LEFT_PWM1

LEFT_PWM2

LEFT_PWM2

RIGHT_PWM2

RIGHT_PWM2

RIGHT_PWM1

RIGHT_PWM1

MISO/DRIVER_SLEEP

+ +

+

። 108 ።

P4.1. Aim
The aim for this topic is to teach soldering

basics and safety measures so the soldering would
be safe and effective.

P4.2. Theoretical part
Ievads
Soldering is one of the most important skills in

the world of electronics. The basics of electronics
can be learnd without this skill, but soldering gives
opurtunity to make more interesting pojects and
join the electronics enthusiast group. More and
more of electric and electrotechnical devices are
used that is why this skill is so important. A big
part of electronics enthusiast’s everyday life is not
only to understand, but also to make, repare and
add to electric device.

In this chapter we will learn the basics of
soldering concentrating on plated trhough-hole
soldering – PTH. We will look at the materials and
tools as well as repairing already soldered plate.

Materials used

Solder packages

4. Annex
Learn soldering

In this chapter we will learn the basics of
soldering concentrating on plated trhough-hole
soldering – PTH. We will look at the materials and
tools as well as repairing already soldered plate.

You sould choose the diameter and chemical
contents of your solder according to your task.
Without diving in too deep the solder is deviden in
conainin lead and not containing lead. Historicalt
lead (Pb) mixed with tin (Sn) is ment to create
solder with lower melting temperature and better
flow which is important for good connection
between parts.

 Since 2006 many countries have forbidden
using lead containing solder, because of nature’s
protection and human healt. With direct contact
lead accumulates in human bodies and in big
amounts can be poisonous. That is why it is
important to remember – after using lead
containing solder you should carefully wash your
hands.

To avoid the risk of getting lead in your body
you can use solder with no laed in it. But you have
to take in account that its melting temperature is
higher and grip to other materials is lower. For
improving the grip you can use fluxes. There are
solders with fluxes in their core so you don’t have
to buy them.

 The diameter of solder is determined by the
parts you want to solder. The bigger the part, the
bigger the diameter. For these tasks the best is
solder with its diameter no bigger then 1.0 mm.

 The main soldering material is solder. This
is a mixture of different soft materials which
usually resambles a metal wire. It’s usually rolled
up in a spool or in other easy-to-use packages.

Learn the basics of robotics “SumoBoy” v 2.0 © RobotNest, 2015

Tools used

Solder wick – allows easily taking off the extra
solder from a plate or part because it sucks up all
of the melted solder. It consists of fine copper
wires that are twisted together.

Solder vacuum

Third arm – a part and other tool holder which
is especially useful for a beginner.

Soldering
Is it hard to explane soldering in written from

because the process is highly connected to
individuals skills and attention. However, there
are some conditiond for a good soldering job.

1. Be careful with the hot soldering iron.
2. Keep your workspace clean, don’t eat in your

workspeca (remember about the lead intake).
3. Use the third arm when ever it is useful.
4. If it is possible keep the soldering irons

temperature around 350˚
5. If you see smoke coming from the soldering

iron, lower its temperature of turn it off.
6. Use a special soldering irons cleaner (a wet

sponge or special paste for the tips cleaning)
before every new soldering.

7. Use the sides of the soldering iron not the
very tip.

8. To ensure a better connection try to heat up
both of the parts.

9. After the parts have been soldered first take
away the soldering wire and only then the
soldering iron.

10.A good soldering job look loke a volcano not
a ball or a pile of solder.

For soldering you will need a soldering
iron, soldering irons stand, as well as different
tools for taking of solder and holding parts.

 Soldering iron is an electrical heater which
heats the solder to its melting temperature. As with
every electrical davice you should follow its
instructions provided by its manufacturer. There
are hot-air and gas soldering irons for specific
tasks, but we will look only at the electric ones.

Soldering irons are very diverse to
effectively do the task at hand. They have mant
tips, power settings, temperatures and many
adjustment possibilities. However, the main
condition is the comfort of its use. That is why you
should choose a comfortable soldering iron for
you. If the soldering iron is too big you won’t be
able to solder small details. If it is too small it
moslikely won’t be able to properly heat-up the
parts and the solder won’t be able to stick to them.
It is advised to use a soldering iron with a conical
tip, because it will be easier to use for beginner.

Soldering iron with a conical tip

Solder wick

Solder vacuum – allows taking of the extra
solder using vacuum.

 Third arm

። 109 ።

። 110 ።

Lodēšanas tehnika

Steps of work
1. Prepare the workspace so the heated

soldering iron woludn’t be able to
couse burns and you would have
enough free space to use both hands.

2. Prepare the part to be soldered - small
peaces of wire, old elektroniks parts or
other materials that can be soldered
which the teacher has provided.

3. Clean off the oxide layer from the parts.
This can be done with the help of the
flux (if it is separated from the solder)
or abrasive material, for example, fine
sandpaper. You don’t need to claen the
parts if you solder has flux in it.

4. Solder according to your teachers
instructions.

5. Let the parts cool down and see if the
soldering is done correctly.

Materials needed for the task

Aim
Solder your first part in the supervision of

your teacher.

Materials needed
Material/part Amount

Soldering iron 1
Solder wire 1
Flux 1
Soldering irons cleaner 1
Parts to be soldered As much as needed

P4.1 WORKSHEET

	Blank Page
	Blank Page
	Blank Page
	Blank Page

